纳米压印技术为什么又叫纳米光刻技术
微纳米技术(MEMS,nano technology)为微机电系统(MEMS)技术和纳米科学技术(nano science and technology, nano ST)的简称,是20世纪80年代末在美国、日本等发达国家兴起的高新科学技术。由于其巨大的应用前景,因此自问世以来微纳米技术受到了各国政府和学者的普遍重视,是当前科技界的热门研究领域之一。微纳米技术的研究和发展必将对21世纪的航空、航天、军事、生命科学和健康保健、汽车工业、仿生机器人、家用电器等领域产生深远的影响 微机电系统技术主要涉及0.1μm(1μm=10??-6?m)到数毫米尺度范围内的传感器、微执行器和微系统的研究开发,它以单晶硅为基本材料,以光刻并行制造为主要加工特点,采用微电子工艺设备结合其他特殊工艺设备作为加工手段。纳米尺度一般是指1~100nm(1nm=10 -9?m),纳米科学是研究纳米尺度范畴内原子、分子和其他类型物质运动和变化的科学,而在同样尺度范围内对原子、分子等进行操纵和加工的技术则称为纳米技术,纳米尺度的机电系统则称作纳机电系统。可见二者之间既有联系又有区别,前者是后者的基础,而后者是前者的发展方向。
它的工作原理其实就是按照物理来工作的原理,其实就是有机械力的推动,然后有一些独立可以促进他们的复刻,然后再进行运转
光刻机,也叫掩模对准曝光机,曝光系统,光刻系统等,是制造芯片的核心设备。而芯片是手机的心脏,也是许多高科技产品的根基。
光刻机它采用类似照片冲印技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上。
光刻机的主要性能指标有:支持基片的尺寸范围,分辨率、对准精度、曝光方式、光源波长、光强均匀性、生产效率等。
2018年11月29日,国家重大科研装备研制项目“超分辨光刻装备研制”通过验收。该光刻机由中国科学院光电技术研究所研制,光刻分辨力达到22纳米,结合双重曝光技术后,未来还可用于制造10纳米级别的芯片。
光刻机的原理是什么?
与冲洗照片有相似的地方,但又不大一样。
冲洗照片,是将需要洗印的照片从底片上洗印到相纸上,或是将原底片上的影像放大到相纸上。
光刻机是把大的底片缩小,就是把集成电路图缩印到晶元相纸上。
它与洗印放大机的结果恰好是相反的。
为什么一个原理上并不难的机器门槛很高呢?难点在于它的精度上,所谓是量变产生了质变。
如果我们画一张电路图,把它画在A4大小的纸上,这一点也不难,许多人都能做到。
话题扯得有点远,再回到光刻机上。
在A4大小的纸张上画图相对比较容易。但是如果要把电路图画到一张邮票上就困难了许多。我们再设想一下,如果要把电路图画到一粒米粒上或一粒沙子上就更困难了。
不仅如此,如果要把这粒沙子放到一辆运动的赛车上,让你在运动的状态下,在一边追赶其它赛车的同时,在挡风玻璃上的沙粒上画出电路图,就几乎不可能做到了。
虽然它们都有一个名字,叫画电路图,但是所处的环境、介质及大小的不同,难度就有着天壤之别。
所以,光刻机也分低端和高端。10纳米以下的属于高端光刻机。
笔的粗细,在图纸上所呈现的内容量是不一样的。笔尖越细所能够画出的内容越多,难度也越大,越高端。同样的,还有沙子的大小。沙粒越小,笔尖越细,画的内容越多,难度也就越大。
目前最高端的光刻机的工艺是5纳米级别。5纳米大约为50个原子的宽度。
一个原子的实际大小,大约为黄色光波的5000到2000分之一之间。在这种极端精度下,很多原本可以忽略不计的细节,全部都变成了障碍和难点。
比如说,在赛车的过程中震动是极度敏感的,比如关门的动作,可能都是灾难性的。所以必须要搭配一个极端精度的减震系统。
喜欢摄影的朋友都知道,在摄影过程中,其中一个重要参数就是曝光度。洗印照片也有曝光的问题。曝光量的多少,时间的长短,都会影响成像的效果。
光源,它是画图用的。必须频率稳定,能量均匀,平行度要求高。任何曝光不准确,都会严重影响成像的质量。
因此,运动状态下控制精度,必须是纳米级别的,稍有偏差,成像就会出问题。
光刻机远比我们想象的要复杂的多。可以说,光刻机是人类历史上几乎最精密的机器设备。
有人说,生产芯片靠砸钱。钱,肯定是需要的,但还有环境问题和上述的要素。
科学是来不得半点虚假的。
佳能光刻机22纳米,光刻机是制造微机电、光电、二极体大规模集成电路的关键设备。光刻机可以分钟两种,分别是模板和图样大小一致的contact aligner,曝光时模板紧贴芯片;第二是类似投影机原理的stepper,获得比模板更小的曝光图样。
国内目前做光刻机的主要有上海微电子装备有限公司、中子科技集团公司第四十五研究所国电、合肥芯硕半导体有限公司、先腾光电科技、无锡影速半导体科技。其中,上海微电子装备有限公司已经量产的是90纳米,这是在中国最领先的技术。其国家科技重大专项“极大规模集成电路制造装备与成套工艺专项“的65nm光刻机研制,目前正在进行整机考核。对于光刻机技术来说,90纳米是一个技术台阶;45纳米是一个技术台阶;22纳米是一个技术台阶……90 纳米的技术升级到65纳米不难,但是45纳米要比65纳米难多了。路要一步一步走,中国16个重大专项中的02专项提出光刻机到2020年出22纳米的。目前主流的是45纳米,而32纳米和28纳米的都需要深紫外光刻机上面改进升级。
这位网友说,“记得十年前的课本上就介绍世界上最小的汉字"中国"是通过移动硅原子写出来的。 难道光刻的级别比原子级别更小,这不合逻辑吧。”
这位提出问题的朋友可能对光刻机不太了解。这么说吧,光刻机就是一种感光技术,给电子设备(当然是纳米级别的)投影。这种投影要求精度非常高,甚至一点点的震动都可能照成不可挽回的次品出现。因此,光刻机在光刻时需要在真空条件下进行。
同时,光刻的光源要求十分苛刻。
光刻机分为紫外光源(UV)、深紫外光源(DUV)、极紫外光源(EUV)。按照发展轨迹,最早的光刻机光源即为汞灯产生的紫外光源(UV)。之后行业领域内采用准分子激光的深紫外光源(DUV),将波长进一步缩小到ArF的193 nm。由于遇到了技术发展障碍,ArF加浸入技术成为主流。
由于157 nm波长的光线不能穿透纯净水,无法和浸入技术结合。因此,准分子激光光源只发展到了ArF。通过浸没式光刻和双重光刻等工艺,第四代ArF 光刻机最高可以实现22nm 制程的芯片生产,但是在摩尔定律的推动下,半导体产业对于芯片制程的需求已经发展到14nm、10nm、甚至7nm,ArF 光刻机已无法满足这一需求,半导体产业将希望寄予第五代EUV 光刻机。
从这点上来看,光刻机的光源系统有多恐怖。不是简单的曝光就能解决的问题。
而光源的来源更是令人难以置信。
从这些简易的工作原理图上我们就能知道,光刻机要求的技术实在太高了。
就拿减震装置来说,目前只有德国能制造出世界上最小,精度最高的轴承来。
一台光刻机有上万各部件,每个部件都是极其精密的。其工作原理及其复杂。
当然,我们通过隧道显微镜可以看到原子,甚至通过技术手段可以移动某个原子。但是,芯片生产你不可能一个个地移动原子。一个芯片有上百亿个电子器件,不可能靠一个个地移动原子来完成。
原子的直径一般在1E-10米左右,也就是0.1纳米级别,因此,移动原子与光刻机是两码事。
制造光刻机的难度远比移动原子的难度大得多。