中国有了自己的光刻机,中科院光电技术研究所承担的国家重大科研装备研制项目“超分辨光刻装备研制”通过验收。这是世界上第一台利用紫外光实现22nm分辨率的超分辨率光刻设备,为纳米光学加工提供了全新的解决方案。在光电所的努力下,我国的RD光刻机跳出了通过减小波长、增加数值孔径来提高分辨率的老路,为突破22nm甚至10nm光刻节点提供了全新的技术,也为超分辨率光刻设备提供了理论基础。扩展信息:利用超分辨率光刻设备,项目组为航天科技集团第八研究院、中国科学院上海微系统与信息技术研究所、电子科技大学、四川大学华西第二医院、重庆大学等单位制备了一系列纳米功能器件。包括大口径薄膜反射镜、超导纳米线单光子探测器、切伦科夫辐射装置、生化传感器芯片、超表面成像装置等。验证了超分辨光刻设备纳米功能器件加工能力,达到了实用化水平。
; 国产芯中国“芯”!如果没有华为在通信科技领域的异军突起直接威胁到西方发达国家的核心利益,美国也不会如此丧心病狂的用一个国家的力量对付一个企业,当然我们老百姓也不会去关注芯片这个原本属于科技领域的事情。如今在中国的大街小巷和餐馆排挡,要说什么话题最火,那莫过于“华为5G”和“芯片”这两个话题了。
人们除了惊讶于我国的科技水平居然已经达到了这种地步的时候,也在为我国什么时候才能突破高端芯片的技术封锁而着急。毕竟我们很多人都知道,我国在错过了第一次、第二次工业革命之后,就落后挨打了两百多年的时间,所以每人都都很清楚下一波工业革命的重要性。恰好华为5G的全球领先让我们看到了中国不仅能够赶上第四次工业革命,甚至很大程度上还有引领第四次工业革命的可能,每个人都兴奋不已。
但是目前,我们不得不认识到我国在半导体集成电路方面还和西方发达国家及企业有着不小的差距。在这个节骨眼上,偏偏美国又开始歇斯底里的打击中国科技企业,企图拖慢整个中国的半导体领域发展进程,因此我们很着急,我国何时才能突破芯片的技术封锁呢?
当然,着急是不解决任何问题的,如果着急有用的话,还要那些科研工作者和科学家干什么呢?我们一方面在着急的同时,也得清楚的认识到,即便在西方国家合力封锁我国芯片技术的背景下,我国自己的科技企业,还是取得了突破性的研究结果。
比如我国现有享誉世界的北斗全球定位导航卫星,其中所用的三号芯片现在已经成功的打破了22nm的上限,上海微电子也在当前大背景下加班加点的研制出了能够生产22nm的光刻机。这个消息让全国的科技圈都十分的振奋。
国产光刻机突破22纳米,差距还很大,为啥科研人员如此兴奋?
有不明所以的网友会比较好奇,现在全球最顶尖的芯片是5nm制程技术,甚至连3nm制程的也已经在研发设计中,为什么我们才刚刚到22nm就让国内科研人员异常兴奋呢?原因其实很简单,打个比方在你极度饥饿的时候,别说给你一桌山珍海味了,就是给你一个平淡无奇的白面馒头你都能吃的津津有味!
在上海微电子技术取得突破之前,我国国产的光刻机一直停留在只能制造90nm制程的芯片。这次我国直接从90nm突破到了22nm也就意味着我国在光刻机制造的一些关键核心领域上已经实现了国产化。而自己掌握核心技术有多重要自然不言而喻,在突破关键领域以后,更高阶的光刻机的研发速度只会越来越快。国产光刻机突破封锁,成功研制22nm光刻机,中国芯正在逐渐崛起。
与此同时,西方发达国家的硅基芯片的制造已经接近了物理极限,“摩尔定律”正在逐渐的失效,我国的芯片技术又在不断的突围。此消彼长之下,我国芯片制造能力追平世界领先水平也只是时间问题而已,更何况我国也在同步研究更加具有竞争力的“碳基芯片”,如果一旦研制成功,我们甚至都不需要再依赖光刻机,那么西方国家的封锁手段也会随之土崩瓦解。
所以,我们不能只是干着急,对于我国的芯片领域发展,还是要充满信心的。
中国光刻机历程
1964年中国科学院研制出65型接触式光刻机;1970年代,中国科学院开始研制计算机辅助光刻掩膜工艺;清华大学研制第四代分部式投影光刻机,并在1980年获得成功,光刻精度达到3微米,接近国际主流水平。而那时,光刻机巨头ASML还没诞生。
然而,中国在1980年代放弃电子工业,导致20年技术积累全部付诸东流。1994年武汉无线电元件三厂破产改制,卖副食品去了。
1965年中国科学院研制出65型接触式光刻机。
1970年代,中国科学院开始研制计算机辅助光刻掩模工艺。
1972年,武汉无线电元件三厂编写《光刻掩模版的制造》。
1977年,我国最早的光刻机GK-3型半自动光刻机诞生,这是一台接触式光刻机。
1978年,1445所在GK-3的基础上开发了GK-4,但还是没有摆脱接触式光刻机。
1980年,清华大学研制第四代分步式投影光刻机获得成功,光刻精度达到3微米,接近国际主流水平。
1981年,中国科学院半导体所研制成功JK-1型半自动接近式光刻机。
1982年,科学院109厂的KHA-75-1光刻机,这些光刻机在当时的水平均不低,最保守估计跟当时最先进的canon相比最多也就不到4年。
1985年,机电部45所研制出了分步光刻机样机,通过电子部技术鉴定,认为达到美国4800DSW的水平。这应当是中国第一台分步投影式光刻机,中国在分步光刻机上与国外的差距不超过7年。
但是很可惜,光刻机研发至此为止,中国开始大规模引进外资,有了"造不如买”科技无国界的思想。光刻技术和产业化,停滞不前。放弃电子工业的自主攻关,诸如光刻机等科技计划被迫取消。
九十年代以来,光刻光源已被卡在193纳米无法进步长达20年,这个技术非常关键,这直接导致ASML如此强势的关键。直到二十一世纪,中国才刚刚开始启动193纳米ArF光刻机项目,足足落后ASML20多年。
确保国家粮食安全才是最重要的,在工业生产领域门类齐全,技术够用,怎么都能对付,当然,吃饱饭,有闲钱的时候做一些基础性前瞻性的技术研发和技术储备对一个央央大国来说也很有必要!但粮食安全仍然是第一位的。
改革开放以前,南京无线电所就在研发光刻机,,,还有大飞机运十,大连523军工厂主攻的是核电蓄电池和核电民用,后来这些项目先后下马,造成今天被动的局面,挺多的遗憾。有些高精尖的产品研发,不是一朝一夕能完成,真的需要积累突破,发现问题一项一项解决攻克难关。
不单是光刻机,其他还有许多尖端设备、技术还需要我们去攻刻。 我们中华大国,被外国强权欺凌百年,这笔账迟早要清算,英日美等心里也清楚,在我们刚建国时,即有胆量在朝鲜与老美一较高下,更何况当前我们发展的势头迅猛。 文无第一,武无第二。老美当然要千方百计给我们添堵,只有将我们搞垮,它才心安。
关系到国家发展关键困难时,举国之力制造光刻机不存在对他国来说是很恐怖的存在。这又不是毁灭人类的超级武器。只能让他国明白对中国的任何技术封锁在举国之力之下是徒劳的!
当年的钱学森教授,也是留学美国多年,几经周折才回国的。他所掌握的技术专业,也没有离开美国科技土壤。如今,中国开发研究芯片,也应本着全方位开放思想,有利的因素都调动起来。无论是国内,还是国外的,都把积极性整合好,奔向一个目标发力使劲,相信中国最终一定能攻克芯片之难关!
如果中国以一国之力很快轻而易举的造出了光刻机。5纳米、2纳米,就会给人感觉特别强势,世界其它国家就会更害怕了,就会更快的形成围堵中国的外部环境,得给它们留下慢慢适应的时间,或者叫温水煮青蛙。即使我们已经做出来了,也得给人感觉很不容易,我们付出了巨大代价。没有国家希望世界有个如此厉害的对手。
光刻机由多个系统组成,每个系统都是世界顶级技术,比如光学镜头是德国蔡司公司所制造。我们只要集中力量,三年后镜头超德国,五年后诺贝尔奖得主人数超欧美,只要五年时间,中国技术全面先进了,欧美学生纷纷来中国留学而不是中国学生去欧美留学,到了那一天高端光刻机必将能造!
说分分钟造出来虽然有些夸张,但造出来显然不是很难的问题。 高端光刻机,全球每年只有20亿美元的市场需求,在可以买到的情况下选择自己去造,那中国的公司一定是疯了。 用来制造国防军事领域芯片的大尺寸中端光刻机,中国一直有,而且早就有。 大家一定要搞明白这件事,和目前很多需要进口的零配件一样,中国不造,是基于市场考量,不是技术无法攻关。
很多中国没掌握的技术不是没能力,而是出于利益的问题不想做。举个圆珠笔那个圆珠的例子,很多人说偌大的国家笔芯圆珠都生产不出来,其实不是中国没能力做。日本有现成的珠子卖,价格也不高,买来用是最实惠的。如果中国自己作,首先研发是一笔费用,生产出来后因为附带研发成本,销售价格肯定要比日本同类产品价格高,销售没渠道,就是国内厂家也不会用高成本的产品,没有市场竞争力,也就是不赚钱,也就没有厂家做这事了。但如果上游掐了脖子不买给我们,做个笔芯珠子也就是很短时间的事。
光刻机不是人多就能造出来的。它需要的透镜的技术太苛刻,而且可能人工合成的透镜无法达到要求。日本有世界上唯一一块巨型天然透镜,是从非洲发现并购买回来的。唯一性是不可代替的,多少人也没办法弄出来。日本的顶级光刻机可能隐藏没有公布出来。
光刻机是集合很多国家的高科技企业,历时十数年才有今天的成就,中间申请的专利权不计其数,光刻机制造原理都知道,要想制造出领先水平的光刻机,可能性微乎其微,因为首先你要绕过他们的专利技术,再制造出光源,光学镜片,精密机械,不是一个国家三年、五年,甚至十年能办成的事。
光刻机是集成电路产业的一颗最璀璨的明珠,闪烁着高难问的光辉,如同航空产业的发动机一样,由于技术门槛非常之高,一般人拱不动的,日本由于收购德国亚深,掌握了深紫外光源技术和物镜技术,其尼康和佳能也能做22纳的水平,
这些年还是发了些财的,所以每谈及日本芯片,总有人投去羡慕的目光。我们收不动,大约也只能自家研发,透过新闻报道,我们可以看到,我们走了一条不同的路,取得了更高的精度,有称世界首台用紫外光源实现22纳的EUV,采取多次曝光技术可以实现10纳,我们不吹,10纳以下是一个级别,所以7纳亦可有望实现之。至少打破了禁运规则,他们再想赚钱,不得不重新审定,只是手里还有吗?由此看来,人家比咱们有些人要明白,能赚则赚,这回中国先,要来几台?所以新闻说,可以达到一致的水平。年初要制裁,年底被打脸,这一掌掴出了深紫之血。
我们使用的光源,为固态深紫外,不同于阿斯麦的离子束,我们的优点比较细,可使设备小巧得多,成本还低。二看物镜的镜片,荷兰使用的是磁流变和离子束,辅之以手工,加工慢,人工成本自然就高,我们则实现了全自动。
此二者都是日本根本不可能完成的。以现在的技术,产业以后,以其寿命长,产率高,可以白菜价占领14纳的市场。致于极紫外的,现在都在努力,据说0.1纳的镜片,我们已攻克,上面镀的一层原子膜,中国说是第二,无人敢讲第一。据悉日本不敌已败走,阿斯麦为此正在吭哧憋肚。年初中芯花钱买来的7纳EUV,每台1.2亿美刀,我们的量产后,不过千万级。
第一,目前全球最先进的光刻机,已经实现5nm的目标。这是荷兰ASML实现的。
而ASML也不是自己一家就能够完成,而是国际合作才能实现的。其中,制造光源的设备来自美国公司;镜片,则是来源于德国的蔡司公司等。这也是全球技术的综合作用。
第二,中国进口最先进的光刻机,是7nm。
2018年,中芯国际向荷兰ASML公司定制了一台7nm工艺的EUV光刻机,当时预交了1.2亿美元的定金。请注意,当时这台机器还没有交付,而是下订单。
但国内市场上,其实已经有7nm光刻机。在2018年12月,SK海力士无锡工厂进口了中国首台7nm光刻机。海力士也是ASML的股东之一。
第三,目前国产最先进的光刻机,应该是22nm。
根据媒体报道,在2018年11月29日,国家重大科研装备研制项目“超分辨光刻装备研制”通过验收。该光刻机由中国科学院光电技术研究所研制,光刻分辨力达到22纳米。
请注意该报道的标题:“重大突破,国产22纳米光刻机通过验收。”
也就是22nm的光刻机,已经是重大突破。
22nm的光刻机,关键部件已经基本上实现了国产化。“中科院光电所此次通过验收的表面等离子体超分辨光刻装备,打破了传统路线格局,形成一条全新的纳米光学光刻技术路线,具有完全自主知识产权。”
有关报道中的“全新的技术”,也就是中国科研工作者在关键部件完全国产化情况下,实现的这一次技术突破
中国和世界顶尖光刻机制造还有很大差距。
华为麒麟受制于人,中芯国际不堪大用,澎湃芯片久不见进展,虎愤芯片勉强能用。
实用更是有很远的路要走。
大家放平心态。