1、晶片材料
硅片的成分是硅,硅由石英砂精制而成。硅片经硅元素(99.999%)提纯后制成硅棒,成为制造集成电路的石英半导体材料。芯片是芯片制造所需的特定晶片。晶圆越薄,生产成本就越低,但对工艺的要求就越高。
2、晶圆涂层
晶圆涂层可以抵抗氧化和温度,其材料是一种光致抗蚀剂。
3、晶圆光刻显影、蚀刻
首先,在晶圆(或基板)表面涂覆一层光刻胶并干燥。干燥的晶片被转移到光刻机上。通过掩模,光将掩模上的图案投射到晶圆表面的光刻胶上,实现曝光和化学发光反应。曝光后的晶圆进行二次烘烤,即所谓曝光后烘烤,烘烤后的光化学反应更为充分。
最后,显影剂被喷在晶圆表面的光刻胶上以形成曝光图案。显影后,掩模上的图案保留在光刻胶上。糊化、烘烤和显影都是在均质显影剂中完成的,曝光是在平版印刷机中完成的。均化显影机和光刻机一般都是在线操作,晶片通过机械手在各单元和机器之间传送。
整个曝光显影系统是封闭的,晶片不直接暴露在周围环境中,以减少环境中有害成分对光刻胶和光化学反应的影响。
4、添加杂质
相应的p和n半导体是通过向晶圆中注入离子而形成的。
具体工艺是从硅片上的裸露区域开始,将其放入化学离子混合物中。这个过程将改变掺杂区的传导模式,使每个晶体管都能打开、关闭或携带数据。一个简单的芯片只能使用一层,但一个复杂的芯片通常有许多层。
此时,该过程连续重复,通过打开窗口可以连接不同的层。这与多层pcb的制造原理类似。更复杂的芯片可能需要多个二氧化硅层。此时,它是通过重复光刻和上述工艺来实现的,形成一个三维结构。
5、晶圆
经过上述处理后,晶圆上形成点阵状晶粒。用针法测试了各晶粒的电学性能。一般来说,每个芯片都有大量的晶粒,组织一次pin测试模式是一个非常复杂的过程,这就要求尽可能批量生产相同规格型号的芯片。数量越大,相对成本就越低,这也是主流芯片设备成本低的一个因素。
6、封装
同一片芯片芯可以有不同的封装形式,其原因是晶片固定,引脚捆绑,根据需要制作不同的封装形式。例如:DIP、QFP、PLCC、QFN等,这主要取决于用户的应用习惯、应用环境、市场形态等外围因素。
7、测试和包装
经过上述过程,芯片生产已经完成。这一步是测试芯片,去除有缺陷的产品,并包装。
它的工作原理其实就是按照物理来工作的原理,其实就是有机械力的推动,然后有一些独立可以促进他们的复刻,然后再进行运转
第一步:制作光刻掩膜版(Mask Reticle)
芯片设计师将CPU的功能、结构设计图绘制完毕之后,就可将这张包含了CPU功能模块、电路系统等物理结构的“地图”绘制在“印刷母板”上,供批量生产了。这一步骤就是制作光刻掩膜版。
光刻掩膜版:(又称光罩,简称掩膜版),是微纳加工技术常用的光刻工艺所使用的图形母版。由不透明的遮光薄膜在透明基板上形成掩膜图形结构,再通过曝光过程将图形信息转移到产品基片上。(*百度百科)
将设计好的半导体电路”地图“绘制在由玻璃、石英基片、铬层和光刻胶等构成的掩膜版上
光刻掩膜版的立体切片示意图
第二步:晶圆覆膜准备
从砂子到硅碇再到晶圆的制作过程点此查阅,这里不再赘述。将准备好的晶圆(Wafer)扔进光刻机之前,一般通过高温加热方式使其表面产生氧化膜,如使用二氧化硅(覆化)作为光导纤维,便于后续的光刻流程:
第三步:在晶圆上“光刻”电路流程
使用阿斯麦的“大杀器”,将紫外(或极紫外)光通过蔡司的镜片,照在前面准备好的集成电路掩膜版上,将设计师绘制好的“电路图”曝光(光刻)在晶圆上。(见动图):
上述动图的工作切片层级关系如下:
光刻机照射到部分的光阻会发生相应变化,一般使用显影液将曝光部分祛除
而被光阻覆盖部分以外的氧化膜,则需要通过与气体反应祛除
通过上述显影液、特殊气体祛除无用光阻之后,通过在晶圆表面注入离子激活晶体管使之工作,进而完成半导体元件的全部建设。
做到这里可不算大功告成,这仅仅是错综复杂的集成电路大厦中,普通的一层“楼”而已。完整的集成电路系统中包含多层结构,晶体管、绝缘层、布线层等等:
搭建迷宫大厦一般的复杂集成电路,需要多层结构
因此,在完成一层光刻流程之后,需要把这一阶段制作好的晶圆用绝缘膜覆盖,然后重新涂上光阻,烧制下一层电路结构:
多次重复上述操作之后,芯片的多层结构搭建完毕(下图):
如果上图看的不太明白,可以看看Intel的CPU芯片结构堆栈图:
当然,我们可以通过高倍显微镜来观察光刻机“烧制”多层晶圆的堆叠情况:
第四步:切蛋糕(晶圆切割)
使用光刻机烧制完毕的晶圆,包含多个芯片(Die),通过一系列检测之后,将健康的个体们切割出来:
从晶圆上将一个个“小方块”(芯片)切割出来
第五步:芯片封装
将切割后的芯片焊
一、用途
光刻机是芯片制造的核心设备之一,按照用途可以分为好几种:有用于生产芯片的光刻机;有用于封装的光刻机;还有用于LED制造领域的投影光刻机。
用于生产芯片的光刻机是中国在半导体设备制造上最大的短板,国内晶圆厂所需的高端光刻机完全依赖进口,本次厦门企业从荷兰进口的光刻机就是用于芯片生产的设备。
二、工作原理
在加工芯片的过程中,光刻机通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。
一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、激光刻蚀等工序。经过一次光刻的芯片可以继续涂胶、曝光。越复杂的芯片,线路图的层数越多,也需要更精密的曝光控制过程。
扩展资料
光刻机的结构:
1、测量台、曝光台:是承载硅片的工作台。
2、激光器:也就是光源,光刻机核心设备之一。
3、光束矫正器:矫正光束入射方向,让激光束尽量平行。
4、能量控制器:控制最终照射到硅片上的能量,曝光不足或过足都会严重影响成像质量。
5、光束形状设置:设置光束为圆型、环型等不同形状,不同的光束状态有不同的光学特性。
6、遮光器:在不需要曝光的时候,阻止光束照射到硅片。
7、能量探测器:检测光束最终入射能量是否符合曝光要求,并反馈给能量控制器进行调整。
8、掩模版:一块在内部刻着线路设计图的玻璃板,贵的要数十万美元。
9、掩膜台:承载掩模版运动的设备,运动控制精度是nm级的。
10、物镜:物镜用来补偿光学误差,并将线路图等比例缩小。
11、硅片:用硅晶制成的圆片。硅片有多种尺寸,尺寸越大,产率越高。题外话,由于硅片是圆的,所以需要在硅片上剪一个缺口来确认硅片的坐标系,根据缺口的形状不同分为两种,分别叫flat、 notch。
12、内部封闭框架、减振器:将工作台与外部环境隔离,保持水平,减少外界振动干扰,并维持稳定的温度、压力。
参考资料来源:百度百科-光刻机
光刻机原理是通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到晶圆上,最后形成芯片。
就好像原本一个空空如也的大脑,通过光刻技术把指令放进去,那这个大脑才可以运作,而电路图和其他电子元件就是芯片设计人员设计的指令。
光刻机就是把芯片制作所需要的线路与功能区做出来。简单来说芯片设计人员设计的线路与功能区“印进”晶圆之中,类似照相机照相。照相机拍摄的照片是印在底片上,而光刻刻的不是照片,而是电路图和其他电子元件。