中国首台3纳米光刻机(中国首台3纳米光刻机多少钱)

2022-11-24 21:43:53 基金 yurongpawn

国产最新光刻机多少纳米(中国首台28nm光刻机问世)

;     国产芯中国“芯”!如果没有华为在通信科技领域的异军突起直接威胁到西方发达国家的核心利益,美国也不会如此丧心病狂的用一个国家的力量对付一个企业,当然我们老百姓也不会去关注芯片这个原本属于科技领域的事情。如今在中国的大街小巷和餐馆排挡,要说什么话题最火,那莫过于“华为5G”和“芯片”这两个话题了。

      人们除了惊讶于我国的科技水平居然已经达到了这种地步的时候,也在为我国什么时候才能突破高端芯片的技术封锁而着急。毕竟我们很多人都知道,我国在错过了第一次、第二次工业革命之后,就落后挨打了两百多年的时间,所以每人都都很清楚下一波工业革命的重要性。恰好华为5G的全球领先让我们看到了中国不仅能够赶上第四次工业革命,甚至很大程度上还有引领第四次工业革命的可能,每个人都兴奋不已。

      但是目前,我们不得不认识到我国在半导体集成电路方面还和西方发达国家及企业有着不小的差距。在这个节骨眼上,偏偏美国又开始歇斯底里的打击中国科技企业,企图拖慢整个中国的半导体领域发展进程,因此我们很着急,我国何时才能突破芯片的技术封锁呢?

      当然,着急是不解决任何问题的,如果着急有用的话,还要那些科研工作者和科学家干什么呢?我们一方面在着急的同时,也得清楚的认识到,即便在西方国家合力封锁我国芯片技术的背景下,我国自己的科技企业,还是取得了突破性的研究结果。

      比如我国现有享誉世界的北斗全球定位导航卫星,其中所用的三号芯片现在已经成功的打破了22nm的上限,上海微电子也在当前大背景下加班加点的研制出了能够生产22nm的光刻机。这个消息让全国的科技圈都十分的振奋。

      国产光刻机突破22纳米,差距还很大,为啥科研人员如此兴奋?

      有不明所以的网友会比较好奇,现在全球最顶尖的芯片是5nm制程技术,甚至连3nm制程的也已经在研发设计中,为什么我们才刚刚到22nm就让国内科研人员异常兴奋呢?原因其实很简单,打个比方在你极度饥饿的时候,别说给你一桌山珍海味了,就是给你一个平淡无奇的白面馒头你都能吃的津津有味!

      在上海微电子技术取得突破之前,我国国产的光刻机一直停留在只能制造90nm制程的芯片。这次我国直接从90nm突破到了22nm也就意味着我国在光刻机制造的一些关键核心领域上已经实现了国产化。而自己掌握核心技术有多重要自然不言而喻,在突破关键领域以后,更高阶的光刻机的研发速度只会越来越快。国产光刻机突破封锁,成功研制22nm光刻机,中国芯正在逐渐崛起。

      与此同时,西方发达国家的硅基芯片的制造已经接近了物理极限,“摩尔定律”正在逐渐的失效,我国的芯片技术又在不断的突围。此消彼长之下,我国芯片制造能力追平世界领先水平也只是时间问题而已,更何况我国也在同步研究更加具有竞争力的“碳基芯片”,如果一旦研制成功,我们甚至都不需要再依赖光刻机,那么西方国家的封锁手段也会随之土崩瓦解。

      所以,我们不能只是干着急,对于我国的芯片领域发展,还是要充满信心的。

中国首台3纳米光刻机(中国首台3纳米光刻机多少钱) 第1张

三纳米光刻机是什么

3纳米,是指节点技术的关键尺寸,而这个尺寸不是芯片能用肉眼看到的几何尺寸(一般是毫米到厘米级别),而一般是指栅极长度(gate length)。这个长度是又掩膜版上定义好的尺寸决定的,而在生产过程中决定性的由光刻机来实现(当然也要有光刻胶,腐蚀等技术的支持才能实现)。

1、集成电路尺寸的缩小,也就意味着器件(也叫晶体管)的进一步缩小,也意味着栅长的缩小,栅极的缩小是提升器件开断频率的重要方法之一。频率高了当然就意味着芯片快。

2、但是呢,栅长的减小,导致这个器件很容易烧坏,进而导致整个芯片的瘫痪,比如英伟达A100,采用7nm工艺制造,集成超过540亿个晶体管。虽然芯片出炉的时候就已经做了检测,且集成电路设计中也已做了这方面的考虑,但是这也不能动不动就坏一个吧。

以上两个矛盾之间在一代一代的磨合中实现螺旋式上升,促进了集成电路乃至互联网的大发展。

期间,就是现在好多科研工作者做的事情,想出了千奇百怪的结构优化设计和材料的筛选与改造。这涉及了物理、材料、工艺实现的高精度等富有极大挑战的科学技术,器件栅长的缩小也意味着多方面科学技术的突破。

中国光刻机

中国光刻机历程

1964年中国科学院研制出65型接触式光刻机;1970年代,中国科学院开始研制计算机辅助光刻掩膜工艺;清华大学研制第四代分部式投影光刻机,并在1980年获得成功,光刻精度达到3微米,接近国际主流水平。而那时,光刻机巨头ASML还没诞生。

然而,中国在1980年代放弃电子工业,导致20年技术积累全部付诸东流。1994年武汉无线电元件三厂破产改制,卖副食品去了。

1965年中国科学院研制出65型接触式光刻机。

1970年代,中国科学院开始研制计算机辅助光刻掩模工艺。

1972年,武汉无线电元件三厂编写《光刻掩模版的制造》。

1977年,我国最早的光刻机GK-3型半自动光刻机诞生,这是一台接触式光刻机。

1978年,1445所在GK-3的基础上开发了GK-4,但还是没有摆脱接触式光刻机。

1980年,清华大学研制第四代分步式投影光刻机获得成功,光刻精度达到3微米,接近国际主流水平。

1981年,中国科学院半导体所研制成功JK-1型半自动接近式光刻机。

1982年,科学院109厂的KHA-75-1光刻机,这些光刻机在当时的水平均不低,最保守估计跟当时最先进的canon相比最多也就不到4年。

1985年,机电部45所研制出了分步光刻机样机,通过电子部技术鉴定,认为达到美国4800DSW的水平。这应当是中国第一台分步投影式光刻机,中国在分步光刻机上与国外的差距不超过7年。

但是很可惜,光刻机研发至此为止,中国开始大规模引进外资,有了"造不如买”科技无国界的思想。光刻技术和产业化,停滞不前。放弃电子工业的自主攻关,诸如光刻机等科技计划被迫取消。

九十年代以来,光刻光源已被卡在193纳米无法进步长达20年,这个技术非常关键,这直接导致ASML如此强势的关键。直到二十一世纪,中国才刚刚开始启动193纳米ArF光刻机项目,足足落后ASML20多年。

麒麟9000是绝唱?麒麟9010曝光,3纳米工艺!王者归来

在华为mate40系列年度旗舰的发布会上,我们欣喜地看到了一颗空前强大的麒麟芯片——麒麟9000soc,麒麟9000采用业界最先进的5纳米工艺,集成了153亿晶体管,并且依然集成5g基带,集成度远超其他竞争产品,是目前全球工艺最复杂、综合性能最强悍的5gsoc。

麒麟9000soc终于全面碾压了当时的高通旗舰骁龙865,无论是cpu、npu还是GPU性能都远超骁龙865,其中基于G78架构的gpu让我们最为惊喜,gpu性能一直是高通骁龙的强项,华为则一直相对较弱,而这次的麒麟9000竟然直接堆满了24个G78核心,其性能不仅碾压高通骁龙865,甚至还能暴打高通4个多月以后发布的骁龙888,不得不说麒麟9000创造了国产手机芯片的 历史 ,将是麒麟战胜骁龙的重要转折点,是芯片发展史上的一次里程碑。

然而,正当我们备受鼓舞而精神振奋之时,余承东的神色却暗淡下来,他用略显沙哑的声音沉痛地说“令人遗憾的是业界最强的麒麟9000芯片将成为绝唱,因为美国的禁令,9月15号以后麒麟9000芯片就无法继续生产了,这将是华为最后一款旗舰soc!”

闻讯以后顿觉十分可惜,但是在惋惜之余又十分怀疑,的确,芯片的代工生产对技术和生产设备的要求非常高,具有7纳米、5纳米生产工艺的代工企业只有台积电和三星,但是他们的生产线都用到了美国的技术和设备,根本无法绕过美国为华为代工,国内的芯片生产更是远远落后于国际先进水平,只能代工28纳米工艺以上的芯片,光刻机就是一个难以突破的巨大困难,余承东也在此前的演讲中表示,华为专注于芯片的设计,并没有参与到中投资的芯片制造环节,麒麟9000好像注定要成为华为高端芯片的绝唱,华为也只是一家民营企业,怎么可能面面俱到?

有些失望的同时内心又隐隐觉得华为不会这样认命,2020年11月17日华为将旗下非常成功的荣耀子品牌公司打包出售了,我恍然大悟,从中看到了华为烈士断腕的决心,华为的芯片之路一定会坚持走下去。

近日,有海外媒体爆料称,华为的下一代旗舰芯将是麒麟9010,并且采用3nm工艺,华为并没有停止对麒麟芯片的研发即使无法生产,华为依然坚持投入大量资金、人力进行芯片的设计,要知道3纳米的芯片每次流片都需要几亿元,整个研发费用堪称天价。

有国外网友跟帖,表示他十分看好麒麟芯片,不希望麒麟芯片就此停止,十分期待麒麟芯片继续更新。

光刻机是个巨大的难题,但是难不过“两弹一星”,也难不倒我国成千上万的科学家和技术人员,相信在华为和上海微电子的联手攻关下,我们一定可以研制出最先进的光刻机,构建完善的国产芯片供应链。

2022年,我们有理由期待麒麟9010王者归来!

国产最先进光刻机

第一,目前全球最先进的光刻机,已经实现5nm的目标。这是荷兰ASML实现的。

而ASML也不是自己一家就能够完成,而是国际合作才能实现的。其中,制造光源的设备来自美国公司;镜片,则是来源于德国的蔡司公司等。这也是全球技术的综合作用。

第二,中国进口最先进的光刻机,是7nm。

2018年,中芯国际向荷兰ASML公司定制了一台7nm工艺的EUV光刻机,当时预交了1.2亿美元的定金。请注意,当时这台机器还没有交付,而是下订单。

但国内市场上,其实已经有7nm光刻机。在2018年12月,SK海力士无锡工厂进口了中国首台7nm光刻机。海力士也是ASML的股东之一。

第三,目前国产最先进的光刻机,应该是22nm。

根据媒体报道,在2018年11月29日,国家重大科研装备研制项目“超分辨光刻装备研制”通过验收。该光刻机由中国科学院光电技术研究所研制,光刻分辨力达到22纳米。

请注意该报道的标题:“重大突破,国产22纳米光刻机通过验收。”

也就是22nm的光刻机,已经是重大突破。

22nm的光刻机,关键部件已经基本上实现了国产化。“中科院光电所此次通过验收的表面等离子体超分辨光刻装备,打破了传统路线格局,形成一条全新的纳米光学光刻技术路线,具有完全自主知识产权。”

有关报道中的“全新的技术”,也就是中国科研工作者在关键部件完全国产化情况下,实现的这一次技术突破

中国和世界顶尖光刻机制造还有很大差距。

华为麒麟受制于人,中芯国际不堪大用,澎湃芯片久不见进展,虎愤芯片勉强能用。

实用更是有很远的路要走。

大家放平心态。

中国唯一一台euv光刻机现状

国产光刻机任重道远。“即使你给图纸,你也做不出一个光刻机。”“就算全国都发展半导体制造,也很难成功。”ASML掌门人、TSMC创始人张忠谋在过去两三年里不止一次公开表示,中国大陆自己无法成功制造光刻机。实际上,严格来说,位于荷兰的ASML公司(ASML)是世界上唯一一家可以生产光刻机的公司,但它只是一家组装公司。大量核心技术来自美国,在ASML的供应链中也有中国公司,如傅晶科技和沃尔特天然气公司。实际上,在光刻机成品方面,上海微电子自2002年成立以来,一直牢牢扎根于低端光刻机市场,90nm及以下工艺的产品一直在稳步出货。公开数据显示,2018年上海微电子出货量约为50-60台,约占大陆市场的80%。所以,以上两人的论断要加上一个前提条件,那就是“先进制造工艺”的光刻机。我们常说的高级芯片是指生产工艺小于28nm的芯片,也就是28\14\7\5\3nm的工艺。这次上海微电子在光刻机举行首个2.5D/3D高级封装交付仪式,标志着中国首个2.5D/3D高级封装在光刻机正式交付给客户,但对于我们目前的卡顿芯片制造来说,只是暗夜中的烛光。“1”和“0”的故事虽然近年来“光刻机”屡见报端,但很少有人提到光刻机主要分为“前路、后路、面板”三类。卡脖子的是前路光刻机,这次上海微电子发布了光刻机。如果把芯片制造比作食品生产,前面的路就是“食品”本身,后面的路就是包装袋。面板制造属于平时想不起来的“调味品”,但它的缺失会直接打击消费者的味蕾,给数字生活调味,因为面板是C端用户最“触手可及”的。因为没有驱动芯片,无论是前端还是后端芯片,C端用户都很难对芯片性能有直观的体验。但是,无论包装和调味品对食品有多重要,如果没有“食品”本身,它的价值就是“0”。所以要想充分体现后通道和面板芯片的价值,首先要有性能优异的前通道芯片。在以前的光刻机制造中,其实光刻机并不是按照“NM”的个数来分类的,而是按照光源的波长来分为436nm光源的“g线光刻机”;具有365纳米光源的“I线掩模对准器”;具有248纳米光源的“KrF掩模对准器”;193nm深紫外光源的“DUV光刻机”;以及13.5nm极紫外光源的“EUV光刻机”,也是目前卡脖子的主打产品。目前上海微电子的产品技术已经触及ArF技术和相应的光刻胶。目前,国内公司如上海新阳、通成新材料、南大光电、景瑞股份有限公司等都已开展研发和生产。其中,南大光电旗下的ArF光刻胶已于2020年底顺利通过客户验证,是国内首个通过产品验证的国产光刻胶。

免责声明
           本站所有信息均来自互联网搜集
1.与产品相关信息的真实性准确性均由发布单位及个人负责,
2.拒绝任何人以任何形式在本站发表与中华人民共和国法律相抵触的言论
3.请大家仔细辨认!并不代表本站观点,本站对此不承担任何相关法律责任!
4.如果发现本网站有任何文章侵犯你的权益,请立刻联系本站站长[QQ:775191930],通知给予删除
网站分类
标签列表
最新留言

Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 96633168 bytes) in /www/wwwroot/yurongpawn.com/zb_users/plugin/dyspider/include.php on line 39