本文目录一览:
为了避免能源枯竭与环境污染对人类社会产生更进一步的危害,各国必须改变生产和利用能源的方式。自第二次工业革命以来,电力作为一种高效、清洁且可实现多种能源相互转换的能源利用形式,在世界经济社会发展中发挥着越来越重要的作用。它是当今世界中能源最重要的转化形式,是国民经济乃至国家安全的重要保障。越来越多的一次能源被转换为电力的形式加以利用,很多可再生的清洁能源也只有转换成电能才能广泛地得到应用。电力和能源是紧密联系在一起的,因此,能源变革的实现也必将以电力产业的变革为重点。
传统的发电模式以火力发电为主,其发电量在总发电量中所占比重为70%以上,而火力发电输出的电能大多由化石能源的燃烧所产生的热能转换而成。为了遵循可持续发展的原则,世界各国都在积极寻求新型可持续的电力供应技术,借以替代传统的发电方式。其中水力发电利用水位落差产生廉价无污染的电力,但可能会造成生态破坏;核能发电不会造成空气污染,但发电成本较高,且一旦发生核事故,将造成严重的危害;风力发电将风能转换为电能发出,光伏发电则是将太阳能转换为电能发出,而风能、太阳能都是清洁能源,且都具有取之不尽、用之不竭的优点。但由于风能、太阳能具有随机性、波动性特征,为了*程度地利用这些间歇性可再生能源,并解决资源在空间上分布不均衡的问题,实现对负荷多种能源形式的高可靠供给,学者们相继提出了微电网技术、智能电网技术,促使传统电网逐步向智能电网过渡。
然而,智能电网的物理实体主要是电力系统,能量在智能电网中只能以电能一种形式传输和使用,不同能源之间的传输仍旧是独立进行的,电能、天然气、热能、冷能等的传输互不干扰,有着各自的传输网络。从能源消耗方面而言,虽然通过支持可再生能源的接入,分布式发电技术能够减少火力发电在发电总量中所占的比重,但用户对于除了电能以外的其他能源的需求(如热能、冷能等)却依旧消耗着大量的化石能源,因此光靠分布式发电不能够完全缓解目前能源紧张的问题,分布式能源的大规模高效利用依旧难以实现。因此,综合天然气、电能、热能等各个能源网络进行混合供能,以便实现多种能源子系统之间的协调规划、优化运行,协同管理、交互响应和互补互济,这是满足系统内多元化用能需求、有效提升能源利用效率、促进能源可持续发展的必然趋势。
分布式能源是立足本地资源,平衡终端需求,区域性能源(冷、热、电)的产、储、配、供、控一体化服务体系,包括太阳能、风能、海洋能、水能、热能、煤、石油、天然气、生物质能、氢能。
从总装机容量比例与实际发电比例看,弃风弃光的情况严重。
2016年我国能源消费结构:
当前能源发展与需求的四大矛盾。传统能源电力建设集中在生产侧,特点是大型集约、统发统配,垄断经营。忽略了配电侧的建设,无法满足差异用户的需求。必然需要出现一种建设在终端用户侧的,能实现按需设计、按需生产,就近配给、就近消费,终端节能、终端控制,区域自我平衡循环的新型能源。因此发展分布式能源有着重要的战略意义。
国家能源局印发《能源生产和消费革命战略(2016-2030)》:
天然气分布式能源 是指利用天然气为能源,通过冷热电三联供等方式实现能源的梯级利用,并在负荷中心就近实现能源供应的现代能源供应方式,综合能源利用效率可达70~90%。
天然气分布式能源主要用户市场:
天然气分布式能源经济性影响因素:
光伏发电的分类:
分布式光伏供能流程:
光伏发电的发展趋势:
趋势1:2017年一季度新增装机容量721万kW,与2016年一季度同期基本持平,但建设地区明显由西部向中东部转移。
趋势2:分布式光伏发电装机容量异军突起,市场份额大幅增加。
冷热电联产的含义与现状:
CCHP:Combined Cooling HeatingPower系统又称热电冷联产系统,分布式冷热电联产系统是能源综合梯级利用的解决方案,总的能源利用率可以达到75%~90%。
燃气分布式能源系统经济性评价:热电VS冷电
客观现实的评价:
热电联产:节能、经济性较高;冷电联产:不节能,经济性不高;
输配效率:电>燃气≥热水≥蒸汽>冷水;
“余热利用”:燃料(燃煤还是燃气)与热媒具体分析。
CCHP生产过程中的用能分析:
能源互联网研究现状:
2008 年,美国国家科学基金项目资助了北卡罗莱纳州立大学的黄勤教授研发的未来可再生电能传输与管理(the Future Renewable Electric Energy Delivery and Management,FREEDM)系统,该系统支持可再生分布式能源的“即插即用”,利用能源路由器优化能源分配;另外,该系统利用固态变压器实现分布式能源、负荷和储能装置的接入,利用智能配电系统软件实现了对分布式能源、负荷和储能装置的管理;并设置了创新性的故障保护装置。德国联邦政府经济和技术部于2008 年发起了名为“E-Energy”的技术创新促进计划,开发了基于能量传输系统的信息和通信控制技术,且使用“智能电表”为系统的网络节点提供必要信息;并推出了适用于双向系统的ICT(Information and Communication Technology)解决方案,从而*实现了“以产定销”模式的实际应用。
欧盟于2011年启动了未来智能能源互联网(Future Internet for SmartEnergy,FINSENY)项目,旨在使未来的能源互联网实现自动化故障修复、功率分析控制以及电网维护的功能,并为其构建改进的ICT 平台。2010年,日本开展了“智慧能源共同体”示范工程,提出了一个需求侧响应能源系统,并推动了生产者与用户间能源共同利用模式的形成,且系统中创造性地引入了智能热能供应链,借以实现各建筑间的热能共享。韩国首尔市政府于2011年发布了“智慧首尔2015”计划,期望从智能电网、云计算、绿色交通信息化以及智能环境等方面,实现“智能绿色城市”的信息化发展目标。
结合基于多智能体的一致算法,提出了一种应用于能源互联网分布式电机中的新的分布式协调控制器,从而使能源互联网能够作为旋转备用系统运行。
国内研究现状:
2014 年,全球能源互联网发展合作组织主席刘振亚提出了构建全球能源互联网、实施清洁替代和电能替代的发展思路,期望建设以特高压电网为骨干网架(通道)、以输送清洁能源为主、全球互联的坚强智能电网。
多能源混合供能系统是由单一供能向能源互联网发展的重要过渡,因此国内学者在多能源混合供能领域开展了较多研究。
《关于推进“互联网+”智慧能源发展的指导意见》发改能源〔2016〕392号,定义“互联网+”智慧能源(以下简称能源互联网)是一种互联网与能源生产、传输、存储、消费以及能源市场深度融合的能源产业发展新形态,具有设备智能、多能协同、信息对称、供需分散、系统扁平、交易开放等主要特征。在全球新一轮科技革命和产业变革中,互联网理念、先进信息技术与能源产业深度融合,正在推动能源互联网新技术、新模式和新业态的兴起。
能源互联网是推动我国能源革命的重要战略支撑,对提高可再生能源比重,促进化石能源清洁高效利用,提升能源综合效率,推动能源市场开放和产业升级,形成新的经济增长点,提升能源国际合作水平具有重要意义。
能源互联网的内涵:
能源互联网基本框架:
能源互联网由电力网络、天然气网络、供热供冷系统、分布式发电单元、储能设备、燃气轮机、燃料电池、锅炉、制冷机等部分组成,支持光能、风能、天然气、电能、热能、冷能等不同能源间的相互转换,实现了一次能源侧的多种能源利用率*化,满足了用户侧的多样性需求,并保证了配电网、供热供冷网络的安全、稳定运行。
分布式发电单元:
分布式发电单元主要由风力发电、光伏发电等可再生能源发电设备组成,它是将光能、风能等清洁能源转换为便于传输和利用的电能的核心装置。
风力发电的基本原理为:风以一定的速度和攻角流过桨叶,使风轮获得旋转力矩而转动,从而将风的动能转换为机械能;而风轮通过主轴联接齿轮箱,经齿轮箱增速后带动发电机发电,从而将机械能转换为电能。当前风力发电系统中主要有恒速恒频异步发电机、变速恒频双馈异步发电机和变速恒频直驱永磁同步发电机三大风力发电机型,其中变速恒频系统能在较宽的风速范围内保持*叶尖速比、*功率点运行,是当今的主流风力发电系统。
太阳能光伏发电的原理是光伏效应:当光伏电池受到太阳光照射时,半导体内产生电子-空穴对,即“光生载流子”,将光子中的能量转化为电子的能量;在P-N结内建电场的作用下,电子被拉向N区,空穴被驱向P区,产生与内建电场方向相反的光生电场;光生电场使势垒降低,产生N区指向P区的光生电动势,从而实现了光能向电能的转换。
图1. 能源互联网基本框架
储能设备:
在能源互联网中,每一个能源网络都配备了相应的储能设备,可将多余的能源存储起来,并在必要时刻释放存储的能源加以利用,从而提高能源利用效率。其中,电力网络利用电化学储能装置存储电能,天然气网络利用储气设备存储天然气,供热网络和供冷网络则分别利用蓄热装置以及蓄冷装置存储热能和冷能。
电化学储能又称为蓄电池储能,它的充放电原理蓄电池充电时,利用外部的电能使电池内部活性物质再生,从而将电能转换为化学能存储;蓄电池放电时,电池负极发生氧化反应,正极发生还原反应,从而将存储的化学能转换为电能向外输送。目前的电化学储能装置主要包括铅酸电池、锂离子电池、钠硫电池、钒液流电池、锌空气电池、氢镍电池、燃料电池以及超级电容器等等。
目前的天然气存储方式主要包括气态存储以及液态存储两种方式。气态存储方式包括储气罐储气、地下储气库储气、管道储气、压缩天然气储气等,其中储气罐储气有低压储气罐储气和高压储气罐储气两种方式;地下储气库又分为四种形式:利用枯竭油气田地层穴储气、利用含水多孔地层储气、利用岩
盐地穴储气和利用废弃煤矿井储气;液态存储方式即液化天然气储气,将天然气用低温常压的方法冷却至零下162˚C 以下,从而转化为液态天然气存储,能够大幅度提升天然气存储量。其他新兴的天然气存储技术还有水合物储气技术以及天然气吸附储存技术等。
储热技术是一种以储热材料为媒介,将太阳能光热、地热、工业余热、低品位废热等热能储存起来,并在需要的时候释放的技术,主要分为显热储热、潜热储热与热化学储热三类。其中,显热储热是利用材料物质自身比热容,通过温度的变化来进行热量的存储与释放;潜热储热又称为相变储热,它利用材料的自身相变过程吸热、放热来实现热量的存储与释放;热化学储热则利用物质间的可逆化学反应或者化学吸附反应、脱附反应的吸热、放热进行热量的存储与释放。
蓄冷技术是一种利用蓄能介质将冷量储蓄起来,并在用户需求高峰期时将冷量释放的技术,包括水蓄冷技术、冰蓄冷技术以及化合物蓄冷技术等等。其中水蓄冷技术属于显热蓄冷技术,包括多槽混和连接式(迷宫式)、多槽分层连接式、温差分层式、移动布水分层式四种;冰蓄冷技术属于相变潜热蓄冷技术,它经历了由静态冰蓄冷到动态冰蓄冷的发展过程;化合物蓄冷技术目前还未成熟,实际应用较少。
燃气轮机:
燃气轮机是一种旋转式热力发动机,它以连续流动的燃气为工质,能够将燃料的化学能转变为转子机械能。燃气轮机由压气机、燃烧室、燃气透平三个主要部分组成。燃机轮机常用于驱动发电机,构成燃气轮机发电机组,以将天然气的化学能转换为电能。其工作原理空气进入压气机,经过逐级压缩进入燃烧室,与喷入的天然气混合燃烧,产生高温燃气;然后燃气进入透平中做功,推动燃气透平叶轮转动的同时带动发电机旋转发电;燃气经燃烧、做功后产生的高温排气可通过换热设备放热以回收利用部分余热。
燃料电池:
燃料电池由正负电极以及电解质组成,是一种将化学能转化为电能的发电装置,其转化过程是一种不经过燃烧的电化学反应:当燃料电池处于工作状态时,燃料输入到阳极,并在电极和电解质的界面上发生燃料氧化与氧气还原的电化学反应,产生电流,输出电能。燃料电池包括碱性燃料电池、质子交换膜燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池等。
锅炉:
电锅炉是将电能转换为热能,使水加热以产生具有一定温度的热水或一定压力的蒸汽的电热装置。
电锅炉的工作原理是:首先由大功率电热元件通电发热,将电能转换为热能;或是由电磁感应元件先将电能转换为电磁能,再将电磁能转换为热能;其次利用热交换元件直接或间接地将传热媒介(如水)加热,产生热水或蒸汽。电锅炉的分类方式很多,但最基本的分类方法是:按照电热原理和电热元件不同,电热锅炉可分为电热管电热锅炉、电热棒电热锅炉、电热板电热锅炉、电极式电热锅炉、感应式电热锅炉等五大类。
燃气锅炉是以天然气为燃料,将天然气内部的化学能转换为热能的供热装置。其供热原理为:冷水由进水阀进入锅炉,经过内部燃烧室燃气燃烧加热后产生热水,热水通过循环水泵送入采暖散热器,通过辐射和对流换热来供暖;回水重新进入锅炉里面进行加热,然后重新流入散热器,如此循环往复的进行。
制冷机:
制冷机是一种能够将具有较低温度的被冷却物体的热量转移给环境介质从而获得冷量的机器,常见的制冷机包括压缩式制冷机、吸收式制冷机、蒸汽喷射式制冷机,半导体制冷等。
空调是一种典型的压缩式制冷机,空调制冷技术能够实现电能向冷能的转换。当前我国应用最为广泛的空调主要有热泵型空调器和电辅热泵型空调器两种类型,制冷原理均为循环逆卡诺原理:在空气源热泵技术的制冷过程中,通过自身收集热量效率高的特点,将低温热源集中并整合形成高温热源。当空调处于制热模式下时,室内是制热,室外是制冷;而当空调处于制冷模式下时,室内是制冷,室外是制热。目前的主流制冷剂仍然依靠人工合成的氟氯昂和一些碳氢化合物作为制冷剂原料,容易对臭氧层造成破坏。
吸收式制冷机组依靠吸收器–发生器组的作用完成制冷循环,采用二元溶液作为工质,其中低沸点组分用作制冷剂,利用它的蒸发来制冷;高沸点的组分用作吸收剂,利用它对制冷剂蒸汽的吸收作用来完成工作循环。常用的吸收式制冷机包括氨水吸收式制冷机和溴化锂吸收式制冷机两种。
P2G 技术:
P2G 技术是一种将电能转换为气体中蕴含的化学能的技术。P2G 技术的原理为:首先通过电解水产生氢气和氧气,从而将电能转换为氢能;再将生成的氢气进一步和二氧化碳结合,催化产生甲烷,从而将氢能转换为甲烷含有的化学能。甲烷是天然气最重要的成分,可以以一定的配比生成混合气体注入天然气网络进行运输或存储。P2G 技术的出现加强了电气网络和天然气网络的耦合,实现了能量由电气网络向天然气网络的流动。
能源互联网的关键技术:
能源互联网与传统能源区别:
分布式能源对能源互联网的作用:
第一步对现有电网进行改造,适应分布式能源接入;
第二步将现有分布式能源接入,实现推广前的初步探索,包括在输配、交易、效率等领域的提升;
第三步全面推广,将分布式能源大量推广并接入电网,推动能源互联网最终成型。
发展能源互联网是解决当今世界的能源短缺以及环境污染问题的必然趋势。能源互联网由电气系统、天然气网络、供热供冷系统、交通系统等耦合而成,结合了互联网技术、可再生能源技术等现代技术,是对智能电网的进一步发展和深化。
本文来源于互联网,素材及数据调用原
停止生产,就地查封!
7月15日,国家药监局通告:该局检查组对上市公司长生生物(002680.SZ)全资子公司——长春长生生物科技有限责任公司(简称“长春长生”)开展飞行检查,发现其在冻干人用狂犬病疫苗生产过程中存在记录造假的严重问题。
国家药监局通告
国家药监局迅速责成吉林食药监局收回长春长生的GMP证书,责令停止狂犬疫苗的生产;涉事批次产品,尚未出厂和上市销售,全部控制、查封。吉林食药监局派出调查组进驻长春长生,立案调查违法违规行为;国家药监局则派出专项督查组,督办调查处置工作。
这是新的国家药监局今年4月成立以来,*出手,重拳打假。国家药监局专项督查组表态:“绝不姑息,坚决依法依规严肃查处,涉嫌构成犯罪的,一律移交公安机关予以严惩。”
同日,长生生物发布紧急通知,要求派驻各省的推广团队立即通知辖区内的区、县疾控机构、接种单位,要求立即停止使用长春长生的狂犬疫苗,对库存产品立即就地封存,立即启动召回程序。
长生公司的通知
当天,长生生物董秘赵春志回应媒体表示,“冻干人用狂犬病疫苗销售收入约占长春长生总收入的一半左右,此次事件不涉及公司其他疫苗产品,现在冻干人用狂犬病疫苗生产存在记录造假具体原因还不知道,等待相关部门调查结果。”
狂犬病的死亡率几乎***。1960年,巴西曾发生疫苗惨案,由于狂犬病毒灭活不彻底,66名接种者中18人死亡。对于此次长春长生的狂犬疫苗造假行为,舆论大哗:“连狂犬疫苗都敢造假,简直丧心病狂。”
7月16日,长生生物开盘即一字跌停,疫苗板块集体低开。
原罪:“现金奶牛”贱卖内部人
长春长生,成立于1992年8月,1995年开始生产狂犬疫苗。2000年,人用狂犬疫苗(Vero 细胞)上市,公司生产车间*通过GMP认证。它一度是上市公司长春高新(000661.SZ)的核心资产,第一盈利大户。
2003年12月16日,长春高新董事会通过决议,拟全部转让公司持有的长春长生59.68%的股权,每股转让价格为2.4元。股权受让方之一是时任长春高新副董事长、长春长生董事长兼总经理高俊芳,她受让长春长生1734万股股权,占总股本的的34.68%,转让金额为4161.6万元;上市公司的亚太集团受让长春长生1250万股,占总股本的25%,转让金额为3000万元。
资料显示,2000年、2001年、2002年长春生物分别实现主营业务收入3645.9万元、6002.7万元、14679.1万元,实现净利润526.6万元、1004.7万元、2634.4万元,近三年来该公司的主要经营指标都是在成倍增长。特别是2003年下半年以来,该公司生产、销售了流感疫苗250万人份,流感疫苗始终处于脱销状态。其卓越的盈利能力和高速成长性,导致求购者趋之若骛,云南、河北、四川等全国各地的企业纷纷前来洽谈收购事宜,并报出了相当诱人的条件。其中云大科技、福尔生物出价3元/股,结果反而未中。
长春长生出让价就低不就高,曾让长春高新陷入舆论漩涡。2002年,长春高新净利润737万元,扣掉长春长生净利润2634万元,其他业务实为亏损。长春高新不顾业绩亏损的压力,敢于以8000万元不到的价格卖掉利润奶牛,让人匪夷所思。
为应付各方投诉,安抚市场情绪,经5个月的博弈,2004年4月,长春高新将长春长生的转让价提升到2.7元/股,最终确认高俊芳受让1250万股,亚泰集团受让1734万股。过了8个月,当年12月风波平息,亚泰集团又将484万股原价转让,高俊芳、亚泰集团暗度陈仓,持股占比恢复成原先的1734万股、1250万股。
2005年,长春长生营收1.26亿、净利润3765万元,无疑是一块优质资产。出人意料的是,亚泰集团却在2006年8月以2.8元/股全部转让手中的1250万股,退出长春长生。至此,通过两次蹊跷的股权转让,长春长生成功私有化,被高俊芳牢固掌控。
据看看新闻Knews
借壳:十年8000万变55亿
带着“原罪”,长春长生演变成高俊芳与丈夫张友奎、儿子张洺豪共同掌控的家族企业,业务逐步扩大,同时具备生产病毒疫苗、细菌疫苗能力,成为国内流感疫苗前三甲之一。
2015年7月,凭借国内首批自主研发流感疫苗、人用狂犬疫苗(Vero 细胞)、甲肝减毒活疫苗的光环,长春长生借壳江苏连云港的上市公司“黄海机械”,成功登陆国内资本市场,之后,上市公司证券名称从“黄海机械”变更为“长生生物”。
根据借壳方案,十年前8000万元买进的资产作价55亿元,***置入上市公司,置出黄海机械原有4亿元资产,由上市公司向长春长生股东定增股份购买。交易完成后,高俊芳、张友奎、张洺豪家族合计持股33.70%,成为长生生物实际控制人。
资料显示,高俊芳目前任长生生物董事长、总经理、财务总监;儿子张洺豪任副董事长、副总经理;丈夫张友奎任副总经理兼销售总监。
长春长生,自此则成为这家上市公司的全资子公司,高俊芳亦出任法人代表、董事长、总经理。
2016年3月,山东警方破获案值5.7亿元的非法疫苗案,25种儿童、成人疫苗未经冷链存储运输,销往24个省、市,是为骇人听闻的山东疫苗事件。事件发生后,国家修订疫苗流通、接种管理条例,疫苗流通格局大变,由“经销为主、直销为辅”,转变为“直销模式”。疫苗流通体制变革,消灭了中间环节,疫苗出厂价大幅上涨。
长生生物旗下在售产品包括一类疫苗和二类疫苗,共有6个品种。2017年年报显示,该公司2017年营业收入达到了15.53亿元,归属于上市公司股东的净利润为5.66亿元;其中疫苗销售的营业收入为15.39亿元,对应的营业成本仅为2.09亿元,毛利率达86.44%。
2018年一季度,长生生物净利润同比大增72.22%。
Choice数据显示,截止到7月15日沪深两市中的37家生物医药公司2017年的平均销售毛利率为66%,其中有17家公司的销售毛利率超过了70%。长生生物的销售毛利率,位列在上述37家公司中的第7位。
数据显示,2018年1月2日,长生生物的收盘价为14.39元/股,对应总市值为140.11亿元。今年以来,长生生物股价不断上涨,股价*达到了29.99元/股,对应总市值暴涨超过1倍。在医药股当中,它是众所周知的“大明星”。
黑天鹅事件非首个“污点”
作为长生生物的全资子公司,长春长生号称是国内少数能够同时生产病毒疫苗和细菌疫苗的企业之一,是中国最早获得许可采用细胞工厂技术生产甲肝减毒活疫苗的疫苗企业。目前在售产品包括冻干水痘减毒活疫苗、冻干人用狂犬疫苗(Vero细胞)、冻干甲型肝炎减毒活疫苗、流行性感冒裂解疫苗、吸附无细胞百白破联合疫苗和ACYW 135群脑膜炎球菌多糖疫苗。
其中,冻干人用狂犬疫苗(Vero细胞)2012年上市。该疫苗上市首年,实现销售额2460.83万元,仅占长春长生整个主营业务收入的5.70%。到2014年,该疫苗的销售达到2.12亿元,占比跃居达到34.36%,成为该公司销售额*的单品种疫苗。2015年前3个月的时间,该疫苗的销售额仍可以达到7370.89万元,占比仍达到47.10%。2017年,签发355万人份,同比增长101%,占全国签发量的四分之一,占长春长生总收入的一半。
冻干人用狂犬病疫苗属于二类疫苗,即接种费用由受种者承担。相对由政府实施招标采购的一类医疗,二类疫苗企业定价空间相对较大,因此毛利率水平相对较高。但由于工艺复杂,以及国家资质审批严格,国内可以生产狂犬疫苗的企业并不多,主要供应商除了长春长生,还包括辽宁成大、广东诺诚、辽宁依生等企业。
然而,长春长生此次被收回GMP证书,就意味着公司目前无法生产相关疫苗,预计短期内或给长生生物的业绩造成影响。2017年全年,长春长生实现营业收入15.39亿元,净利润5.86亿元。而整个上市公司长生生物实现营业收入15.53亿元,归属于上市公司股东的净利润5.66亿元。
事实上,长生生物的“高成长”,一直以来都受到外界的质疑。2016年、2017年,营收分别为10.17亿元、15、53亿元,研发投入4300万元、1.22亿元,占比4%、8%,远远低于行业龙头沃森生物同期53%、50%的研发占比。
这次黑天鹅事件并非长生生物借壳上市以来的首个“污点”。2017年11月,原国家食药监总局通报,长生生物25.26万支百白破疫苗“效价指标不符合标准”,要求立即停止使用不合格产品,责令上报2批次不合格疫苗出厂检验结果。“效价指标不符合标准”,即疫苗没有免疫效果。
长生生物随即公告,虽然百白破疫苗可能影响免疫效果,但对人体安全性没有影响;“问题疫苗销售收入只占83万元,对生产经营毫无影响”。当时舆论评论长生生物此举表示,一方面,不说疫苗有没有“效果”,只说是不是“安全”,避重就轻,偷换概念;另一方面,把问题限定在一个批次,心存侥幸,逃避整改。“而原食药监总局的板子高高举起,又轻轻松下,罚酒三杯,根本起不到警醒的作用。”
2018年3月,原国家食药监总局副局长焦红出任新成立的国家药监局局长,“重拳出击、重典治乱,加大违法违规行为打击力度”成为国家药监局成立之后的五件大事之一。长生生物撞在焦红的枪口上,一旦生产造假坐实,作为高管的高俊芳、张友奎、张洺豪一家人,或将面临追究刑事责任。
(看看新闻Knews
“我已多次说过,我国不应再发展天然气热电联产了,要尽快停止。”谈及气电发展,中国工程院院士、国家能源委员会专家咨询委员会委员江亿态度明确,“从电源结构上看,我国是需要天然气发电厂的,但需要的是天然气调峰电厂,而非天然气热电联产。”
值得注意的是,中国工程院院士倪维斗在不同场合也多次表达过类似观点。
天然气热电联产在我国气电领域占据“大头”。
(文丨
第一部分
反对热电联产
调峰or热电联产
“江院士说得对,我完全赞同。”
“江院士的观点不对,基本论点就是错的。”
“江院士的说法有点太*了,但我基本认同他的观点。”
“江院士的研究方向不是气电,显得有点‘外行’。”
……
江亿院士的观点一经发表,便引起了大争议。支持者态度明确,反对者也毫不含糊,有的甚至言辞激烈。分歧、选边站队、隔空喊话,气电发展路线之争近期成为行业舆论热点。
气电,是清洁、低碳能源。在温室气体排放成为全球焦点议题的背景下,清洁、低碳是未来的发展方向。国际上对气电推崇有加,我国也提出了“有序”“适度”发展气电等原则,并制定了颇具雄心的发展规划。例如,《电力发展“十三五”规划》明确,“十三五”期间,全国气电新增投产5000万千瓦,2020年达到1.1亿千瓦以上。装机规模相当于“五年翻一番”。
但数据显示,当前我国气电比重仍然较低。截至2018年底,我国气电装机总量8330万千瓦,占比仅4.38%,远低于美国42%、英国42%与韩国27%的水平。
2018年天然气消费情况(单位:亿立方米)
《电力发展“十三五”规划》
《天然气发展“十三五”规划》
有序发展气电,大力推进分布式气电建设。充分发挥现有天然气电站调峰能力,推进天然气调峰电站建设,在有条件的华北、华东、南方、西北等地区建设一批天然气调峰电站,新增规模达到500万千瓦以上。适度建设高参数燃气蒸汽循环热电联产项目,支持利用煤层气、煤制气、高炉煤气等发电。推广应用分布式气电,重点发展热电冷多联供。“十三五”期间,全国气电新增投产5000万千瓦,2020年达到1.1亿千瓦以上,其中热电冷多联供1500万千瓦。
借鉴国际天然气发展经验,提高气电比重,扩大天然气利用规模,鼓励发展天然气分布式能源等高效利用项目,有序发展天然气调峰电站,因地制宜发展热电联产。在可再生能源分布比较集中和电网灵活性较低区域积极发展天然气调峰机组,推动气电与风力、太阳能发电、生物质发电等新能源发电融合发展。2020年气电装机规模达到1.1亿千瓦以上,占发电总装机比例超过5%。
“十三五”气电发展规划目标
气电项目具体可分为纯发电项目、天然气调峰电站、天然气热电联产以及天然气热电冷三联供项目。虽然种类很多,但比较容易区分:纯发电项目多建设于油气资源丰富的国家和地区,我国气电项目多为调峰电站和热电联产。纯发电项目只用于发电;天然气热电联产电站是在发电的基础上增加了供热的功能;天然气热电冷三联供则是在发电、供热的基础上,进一步增加了制冷的功能。三者功能依次增多。纯发电项目与天然气调峰电站都只有发电功能,但两者定位不同,前者是一直发电的,后者则只是在缺电时才发电,其他时间“休息”,两者就像小汽车的4个轮胎与“备用轮胎”的差别。总体来讲,调峰电站能起到保障电力系统安全稳定运行的作用。
双方争论的焦点就在于应该发展“调峰”还是应该发展“热电联产”电站。看似难以对比的两种形式为何成了“非此即彼”的竞争、替代关系?
“去年我国已经超过日本成为世界第一大天然气进口国,对外依存度超过40%,如果再升高,能源安全就会产生问题”
“我国天然气资源不多,目前天然气消费占比7%左右,很难像发达国家一样达到20%—30%。尽管比例很低,但去年我国已经超过日本成为世界第一大天然气进口国,对外依存度超过40%,如果再升高,能源安全就会产生问题。石油储藏相对容易,但对外依存度已经超过60%,这也不是好事。如果天然气对外依存度超过60%,这将给能源安全带来很大问题。”江亿说,资源是基础,“家底”摆在这里,任何行动不能脱离这一实际。
数据显示,2018年我国天然气消费总量约2800亿立方米,进口约1250亿立方米。在“资源不多”这一基础判断之上,江亿向
“非化石能源——水电、光伏、风电、核电是我国能源未来发展的最主要方向,但除了水电之外,风电、光伏发电的灵活性都挺差,非人类可以控制,核电也不容易来回调,考虑到电站的安全问题,核电*也别调。发展非化石能源电力的最主要瓶颈,好多人说是电网输送能力不强。不对!是缺少灵活性电源。”江亿说,“德国、丹麦等国风电都发展得不错,很重要的原因是有气电调峰。因为气电的调节性能非常好,就像汽车一样,一脚油门下去,腾一声就起来,一抬脚,就慢下来,没有那么大的惯性,不像燃煤锅炉。”
据江亿介绍,我国近年来也建设了一些天然气调峰发电厂,但几乎不用,“因为我国缺少天然气资源”。而调峰能力的不足是造成弃水、弃风、弃光——“三弃”的重要原因。国家能源局数据显示,近年来我国每年“三弃”电量超过1000亿千瓦时,与北京市全年用电量相当。“所以,我国就应该将有限的天然气资源用在其他能源不能解决的问题上,即为电力系统调峰。天然气是宝贝,应该用在‘刀刃上’。反之,天然气用作热电联产,就丧失了调节能力。”江亿说。
“从整个电源结构上讲,我国是希望有气电厂的,但希望的是天然气调峰电厂,而非天然气热电联产”
为何天然气热电联产会丧失调峰能力?据介绍,这源于热电联产的物理特性。
热电联产同时生产热和电,但以生产热为主要目的。热电联产就像北方的火炕。火炕一头连着灶台,另一头连着炕,灶台可以烧火做饭,烟气会进入铺设在炕里的通道,为炕供热。换言之,热电联产中的电和热就像火炕的火和烟,两者是捆绑在一起的。
因此,江亿表示,天然气热电联产的电力是随着供热需求而变化的,不由自己做主,也就失去了灵活性优势,所以,其对电力调峰的贡献不大。“另外,天然气热电联产与燃煤热电联产的*区别,是天然气热电联产的‘热电比'要小得多,几乎差一倍,至少差60%。”
那么何为热电比?这一差别会导致什么后果?
据江亿介绍,热电比即是热电联产项目供热量和发电量的比值,由于以供热为主要目的,所以热电联产的热电比越高越好。“但是天然气热电联产因为热电比小,所以,为了生产同样多的热,其生产的电量要比燃煤热电联产高出一倍。这就麻烦了,因为随着城市产业结构调整,高能耗工业的比例越来越低,主要的用电方已变为建筑用电。相比于工业,建筑用电量少、用热量高。如果都像北京一样,将燃煤热电联产改为燃气热电联产,立刻就出现问题了,即生产的电会增加非常多!这就是热电比小引发的矛盾,尤其是在冬季供暖期间,为了满足期间不断增加的供热需求,就得发更多的电。所以,近年来北京频繁出现向外地送电的现象。本来气电可以与风电、光伏发电配合、互动,帮助风电、光伏发电等可再生能源上网,结果这样一来,反而把风电、光伏发电给‘挤’出去了,造成了弃光、弃风。”
另外,由于一立方米天然气的能量产出了更多的电力,生产的热相应就会变少,所以,与燃煤热电联产相比,为了提供同样的热量,就需要消耗更多的天然气。考虑到我国“富煤、少气”的自然禀赋,天然气热电联产的合理性大大降低。
因此,江亿表示:“从整个电源结构上讲,我国是希望有气电厂的,但希望的是天然气调峰电厂,而非天然气热电联产。”
“天然气就像是博士,很稀缺,就应该安排他去干些*的活儿。而发电、热电联产这种事情不用安排博士去干,让本科生来干就可以了”
事实上,江亿“反对”天然气热电联产并非仅仅因为其调峰能力受限。在他看来,相比于热电联产,气电的调峰作用更加稀缺、“珍贵”。
“煤炭利用的*的法子就是发电。煤电是适用于电力基础负荷、热电联产的,这是煤炭最善于干的事儿。”江亿说,“天然气就像是博士,很稀缺,就应该安排他去干些*的活儿。而发电、热电联产这种事情不用安排博士去干,让本科生来干就可以了,如果安排博士来干,博士就不够用了。得让博士干他擅长的事情——调峰。因为煤炭根本干不了调峰的事儿,如果硬逼着煤炭调峰,效率低、成本高。所以,就是应该让气电去调峰,煤炭老老实实地去发电、热电联产,这多好啊。”
江亿接着说:“燃气热电联产并不是说不对,从提高天然气利用效率角度来讲,天然气热电联产是很好的方式,但从‘用有限的资源去干别人干不了的活儿’的角度上讲,天然气热电联产的方式就不对了。就好像你满地都是博士,让他去干本科生的活儿也行,可能还干得不错。但是我就那么几个博士,是不是让他去干本科生干不了的活儿更合适?为何非要让他去干本科生就能干的活儿呢?”
“人家别的国家,如美国、德国,天然气很多,就是说他们博士挺多,他们效率怎么高怎么干。但咱们没有那么多天然气。所以,就得从优化的角度而非提高能效的角度看待此问题。”江亿说,因为我国天然气消费量占比不到10%,天然气热电联产能源效率虽然很高,可以达到80%甚至更高,但对能源总体效率影响不大。“但通过让天然气去干别人干不了的活儿、保证非化石能源电力的发展,这个意义就大了。”
“出发点不一样,想的事情就不一样。天然气有太多优越性了。例如,干净,比煤干净多了,可以替代煤炭在城市中分散烧。另外,很容易实现自动化、管道运输。这么好的资源,需要充分发挥其特色、特点。别人干不了的活儿,就让它来干。总之,大电厂、热电联产让煤炭来干就可以了,天然气这东西宝贝着呢。逻辑就是这么个逻辑。”江亿总结说。
这一说法,也得到了中国工程院院士倪维斗的认同:“以煤为主是符合我国资源禀赋且不可改变的事实。相比而言,天然气更像是巴黎香水,宝贵的能源应该用在合适的地方,如果用在靓女靓男身上,就比抹在老头老太太脸上更合适。”
“用气发电就意味着替代用煤发电,也就相当于天然气替代煤炭——‘气代煤’”“那么把煤炭放哪儿、用作何用?”
对此,清华大学建筑节能研究中心教授付林表达了同样的观点。
“天然气热电联产能源利用效率高,但其在供热的时候还在发电。这就会产生一定的问题。因为用气发电就意味着替代用煤发电,也就相当于天然气替代煤炭——‘气代煤’。”付林说,“这没有错!但关键是替代什么样的煤?如果我国天然气资源充足,这种替代没有问题,但是我国没有这么多的天然气资源,所以就会出现问题。尤其是国际形势的变化会影响我国能源安全,毕竟能源是经济社会发展的命脉、血液。”
在付林看来,这种情况下,需要考虑的就是怎样有效替代煤炭的问题,即替代哪一部分的煤炭。
“主要应该替代能源利用效率比较低、污染排放比较高的煤炭。如散煤、燃煤锅炉用煤。”付林说。据他介绍,从世界范围来讲,煤炭的*用途是发电。西方主要国家八九成的煤炭都用来发电。如果煤炭*用途是发电,现在却要用燃气发电来代替燃煤发电,“那么把煤炭放哪儿、用作何用?”
“不管是天然气热电联产,还是热电冷三联供,其实都是在发电过程中挤压燃煤发电。考虑到我国以煤为主、天然气匮乏的资源禀赋,尤其是在近年来供气保障紧张甚至出现‘气荒’的情况下,用气电替代煤炭发电,且替代的是煤炭利用的*方式,这种替代是需要打个问号的。”付林说。
因此,付林表示,天然气的利用要发挥自身特长、优势:一是替代污染严重、效率低下的煤;二是煤炭难以起到作用而天然气有其独特优势的地方,即调峰,因为气电灵活,在调峰方面远远优于煤电。
“天然气这么贵,用得越少越好”
调峰,得到了不少专家的认同。
“燃气机组启停快、运行灵活,可为清洁能源、负荷波动等提供灵活调节。我国天然气储量有限,目前天然气对外依存度超过45%;燃气发电成本远高于煤电,仅燃料成本就接近0.5元/千瓦时;燃气发电同样排放二氧化碳,每燃烧1吨标准煤当量的天然气,排放1.65吨二氧化碳,相当于等热当量煤炭排放二氧化碳的60%。2018年,我国燃气装机容量8330万千瓦,年平均利用小时数2680小时,远高于西班牙燃气发电的年均利用小时数(1580小时),燃气发电年排放二氧化碳约1亿吨。综合考虑气源条件、发电成本和碳减排,我国燃气发电应以调峰电站为主。”在4月18日召开的中国电力企业联合会2019年第一次理事长会议上,中国电力企业联合会理事长刘振亚对天然气发展给出了这样的结论。其中提到的西班牙,因其风电发展的优异成绩在全球电力行业小有名气。
“我完全同意江院士的观点。气电的主要目的就应该是为可再生能源调峰,而不应该以发电利用小时数论英雄。”中海油研究总院规划研究院综合规划*工程师许江风态度明确,“天然气这么贵,用得越少越好。”
据许江风介绍,挪威地处天气寒冷的北欧地区,供热需求大,但当地通过利用可再生能源、垃圾焚烧等技术,已经实现了“去煤化”,天然气、石油消费也在下降。“当地的气电厂年利用小时数只有300多小时。因为其定位就是为可再生能源调峰,完全没必要烧太多天然气。”
《电力“十三五”规划中期评估及优化建议》也明确提出,建议“调整天然气电站发展方式”。具体来讲,该文件建议将发展调峰电源作为气电主要发展方向,重点布局在气价承受能力较高的东中部地区和在新能源快速发展的西北地区。
该文件认为:“我国天然气资源严重不足。人均天然气剩余探明可采储量仅相当于世界平均水平的1/10。气电成本高,气价对发电成本影响很大,我国发展气电不具有成本优势。长期以来,我国气电发展方式不合理,调峰优势尚未充分发挥。热电联产占比高,截至2017年底,全国气电装机7629万千瓦,其中70%以上是热电联产项目。”
第二部分
支持热电联产
“天然气不是宝贝,因为天然气资源压根儿就不稀缺”
“我不认同江院士的观点有两条,首先我认为天然气不是宝贝,因为天然气资源压根儿就不稀缺。”北京某上市公司旗下天然气热电联产企业主要负责人开门见山,对“我国天然气资源匮乏”的基本观点予以否定。
谈及天然气资源匮乏与否,2017年冬季供暖季出现的“气荒”是绕不开的话题。当年,我国北方地区出现天然气供应短缺,影响到部分居民的冬季采暖,引发社会舆论广泛关注。
“当时为什么出现‘气荒’?主要有两方面原因:
一是供气方出现了问题,即中亚天然气供应被哈萨克斯坦截留了一部分,每天少了5000万立方米,因为当地天气也很冷,所以天然气消费量需求很旺盛。
二是当年我国‘煤改气’动作太大了,‘运动式’的改造,天然气需求一下子就上去了。但天然气供应能力建设需要时间,所以导致了供需资源不匹配。”上述负责人认为,这次“气荒”是由天气方面的偶然因素和行政方面的干预因素叠加而成,并不能用来证明天然气“资源不多”。他进一步表示,随着“煤改气”日趋理性,近两年天然气需求的涨幅都已趋缓,后续供需关系不会太紧张。“我国2018年天然气消费量在2800亿立方米左右,净增400亿立方米,今后的增量大概在300亿立方米左右,相对还是比较平稳的。”
供需形势的平稳也反映在了价格上。多位受访对象向
江苏省能源局气电及分布式能源工程研究中心秘书长刘志坦说:“2017年底的‘气荒’,是特殊情况,不会成为常态。因为国际市场是不缺气的。这也是天然气行业的主流观点。至少在2025年之前,全球天然气将呈现相对宽松的局面。包括中石油、中海油等上游企业和地方天然气公司等下游企业,都持这样的观点。”
“国家能源局和美国能源部在我国举办了中美两国天然气行业的合作论坛,目的就是促进两国的天然气贸易”“国际市场上气源是充足的”
为什么说天然气将呈现供应宽松?
“这个从全球各天然气生产大国液化厂的建设计划就能看出。”上述负责人说。例如,美国是目前全球*的天然气生产国,并在2017年成为天然气净出口国。“美国主要以LNG形式出口天然气,其在墨西哥湾规划了好几个千万吨级(一吨LNG约合1400立方米天然气)大型液化厂,液化后直接装船运往世界各地。”
据介绍,美国的液化能力正在快速释放。中石油经济技术研究院年初发布的《2018年国内外油气行业发展报告》显示,去年全球LNG贸易量为3.24亿吨(约合4406亿立方米),同比增长10%,增速与上年持平。LNG进口增量主要来自亚洲和欧洲,出口增量则主要来自澳大利亚和美国。其中,澳大利亚出口量为6861万吨,同比增长21.7%;美国出口量为2105万吨,同比增长高达63.2%。
“目前中美之间的LNG贸易还比较少,去年交易量只有几十万吨,才刚刚起步。但在5月中旬,国家能源局和美国能源部在我国举办了中美两国天然气行业的合作论坛,目的就是促进两国的天然气贸易。因为美国这些在建的液化厂投资巨大,千万吨级液化厂的投资都在四五百亿美元左右,液化厂必须保证下游有稳定的市场才能收回投资,所以这就需要签订一些长期协议。”上述负责人说。
那中美贸易战会否影响两国天然气合作?
“这个完全可以绕开的,美国企业可以把气先卖给欧洲人,我们再从欧洲人那儿买回来,完全可以避开高关税。”上述负责人说,“另外,在天然气交易中,为了防止倒卖,卖方通常会在协议中列出‘目的地限制’条款。原先这是很严格的,但现在随着美国出口量的增加,这方面已经松动。”
上述负责人表示,考虑到美国在液化厂的投资力度之大,其将来很可能成为世界*的LNG卖家,而中国将成为*的买家。“除了美国,目前的产气大国卡塔尔、俄罗斯、加拿大、澳大利亚、印尼等都在投资建设定位于出口的液化厂。而需求方面,日本天然气消费量呈现下降趋势,韩国基本趋于平稳,中国是主要的增长国家,印度也能上涨一些,其他国家的需求增量都相对较小。所以,国际市场上气源是充足的。”
“前几年国内在天然气勘探开发上投资少,中石油等企业天然气资源‘占而不采’的现象比较严重。国家能源局等主管部门拿他们也没办法”
“同时,国内也在加大力度开发天然气。前几年国内在天然气勘探开发上投资少,中石油等企业天然气资源‘占而不采’的现象比较严重。国家能源局等主管部门拿他们也没办法。但近两年这些企业还是比较讲政治的,中石油去年开始加大了勘探开发力度。”上述负责人说,“另外,我国页岩气资源储量全球第一。美国之所以能实现天然气净出口,就是因为他们在页岩气开采方面取得了技术突破。目前,中石化在页岩气开采方面已经具备了比较成熟的技术。相信这些技术会在近几年迅速推广开来。事实上,技术达到了零界点,之后必然是爆炸式的增长。”
另据介绍,2017年之所以出现“气荒”,除了因为部分中亚管道气“缺席”外,还因为有的海上LNG无法及时“到场”。
“由于北方LNG接收站少且当时出现了大雾,LNG船舶长时间靠不了岸,无法释放保供能力。”上述负责人说,“所以去年国家发改委在东部沿海一下子规划了17个LNG接收站。”
建设这么多接收站有什么好处呢?
据介绍,首先是灵活,接收站可以买现价LNG,也可以买长期协议的气。再一个就是,接收站目前主流的储罐容量是16万立方米,一个储罐能存气1亿立方米。所以,如果建设的罐多了,就相当于建设了一个大的储气库。因为天然气消费具有明显季节性,例如,北京的夏季用气量仅为冬季的1/10,但是天然气产量是相对稳定的,所以这就需要一定的储气设施,来调节供需之间的“时差”,让供需更匹配。
“另外,储气设施多了,‘三桶油’就能更好地掌握购买‘节奏’。去年因为担心‘气荒’复发,所以‘三桶油’在国际市场上集中购买了大量的LNG。由于接收站少,LNG船舶不能及时卸货、储存。但LNG船都是有卸货时间限制的,卸完货后船舶才能对接下一个客户。因此‘三桶油’尤其是中海油只能将订购的大量LNG倒卖给别人。但此时的价格就不再是购入的价格了,而是大幅下降了。中海石油因此赔了不少钱。”上述负责人说,“当然,我觉得这都是特殊情况,不应该成为常态。要是成为常态了,那说明咱们能源主管部门的管理水平得多次啊?!”
上述负责人表示,沿海正在建设的17个接收站将在未来两三年集中投产,届时接收能力将集中释放,整个天然气国内市场供需形势将发生根本性变化,不会再有“气荒”出现。
“用得越少,投资就会越少,这个行业就越发展不起来。只有用了,才能吸引投资和促进技术进步,才能做大市场。换言之,天然气会‘越用越便宜’”
“另外,天然气也不是宝贝,不是‘*品’。”上述负责人说,在《天然气发展“十三五”规划》中,我国已明确了天然气在我国能源中的定位——“逐步把天然气培育成主体能源之一”。“从国际上看,也是这样的发展趋势。而且天然气市场本身也在快速扩张,国内外市场都是如此。”
据刘志坦介绍,2017年全球天然气在一次能源消费比重约23%,我国天然气占一次能源消费比重为7%,2020年的目标是提高至10%,相应的消费量将达到3600亿立方米左右,较2015年增加1600亿立方米,“就目前发展情况来看,10%的目标是极有可能实现的。”
“有很多人担心天然气对外依存度高会引起能源安全问题,但其实没有那么严重。要是那么想的话,大豆等粮食岂不是更麻烦?”上述负责人说,例如,2017年我国进口了9500万吨大豆,对外依存度超过87%。“要是这么看待问题,那么日本、韩国天然气安全风险*,因为他们几乎全靠进口。但实际上两国天然气并没有出现过供应安全问题。”
上述负责人表示,我国气源是多元化的,有国内自产气,也有进口气,且进口气战略方向很多:有俄罗斯的天然气,将在近两年从东北地区入境;有中亚的,从西北地区入境;有缅甸的,从云南入境;还有海上来的,即进口LNG。
“多气源能够更好保障天然气的供应。能源安全需要考虑,但不能搞得像不能用了。恰恰相反,我们更需要用天然气。”上述负责人说,“考虑天然气利用问题,需要用企业家思维,因为一个产业的发展,良好的投资循环是必需的。用得越少,投资就会越少,这个行业就越发展不起来。只有用了,才能吸引投资和促进技术进步,才能做大市场。换言之,天然气会‘越用越便宜’。”
“说天然气是宝贝,一定程度上是认为其稀有。但从目前的资源储量来看,天然气有的是,是足够用的。”上述负责人说,“天然气不能成为‘*品’,从国家层面来说,应该通过推动产业发展,使得天然气成为‘大众产品’。天然气发展应该是这种思路。”
“就电力供应来讲,未来可能更多地依靠可再生能源,但是热力不一定从远方来,而且新能源供热在一定程度上也是不经济的。最适合实现高品质供热的就是天然气热电联产”
“第二条我不认同江院士观点的是关于天然气热电联产。院士‘反对’天然气热电联产,我不太理解这个观点。”上述负责人说,“任何一项技术是否合理,都需要看它的应用场景。离开场景谈一项技术是没有意义的,因为各类技术都有优缺点,都有其适合的应用场景。”
“在北京这种大气污染治理任务较重的中心城市,天然气热电联产是最经济、最合理的供热模式。”上述负责人说,天然气干净,这是煤炭无法比拟的,“有观点说气电会排放氮氧化物,造成大气污染。这是事实,但相比于煤电,除了氮氧化物,气电的其他大气污染物排放要少得多,基本没有。”据他介绍,目前煤电“超低排放”改造后,声称能像气电一样干净。但事实上,“超低排放”只是跟气电的排放标准(氮氧化物50毫克/立方米、二氧化硫35毫克/立方米、烟尘5毫克/立方米)比较,而气电的实际排放水平远远优于这一排放标准。
“气电几乎没有烟尘和二氧化硫排放;烟气经过处理后,氮氧化物排放水平一般都低于10毫克/立方米。而煤电不仅排放二氧化硫、烟尘,其烟气经过处理后,氮氧化物排放水平也在20—30毫克/立方米。所以,天然气的环保优势明显。”上述负责人说,对于污染治理形势严峻的中心城市来讲,天然气热电联产是必然选择。
同时,多位受访专家表示,气电用水仅为煤电的1/3,占地更少,非常适合建设在城市中心或周边。
刘志坦也表示:“天然气热电联产一定是北方重要大城市将来重要的供热方式之一。随着2020年后俄罗斯天然气东线贯通,东北地区将是消纳这部分天然气的重要消费市场之一,哈尔滨、沈阳、长春、大连4个城市都可以建设天然气热电联产机组,因为当地供热期长,供热需求大,这些因素都有利于发展热电联产项目。就电力供应来讲,未来可能更多地依靠可再生能源,但是热力不一定从远方来,而且新能源供热在一定程度上也是不经济的。最适合实现高品质供热的就是天然气热电联产。”
另据刘志坦介绍,北方地区的省会城市也都是天然气热电联产的潜在市场,在城市地区发展天然气热电联产将成为一种趋势。“事实上,目前这已经成为趋势,石家庄、济南、廊坊等都在积极推动相关项目建设。”
国务院发展研究中心资源与环境政策研究所研究员郭焦锋也认为:“天然气热电联产因其环保特性好、能源利用效率高,非常适合建在城市地区尤其是环保要求高的地区。不能‘一刀切’、彻底否定天然气热电联产,还是要根据各地实际选择是否建设。天然气热电联产肯定是有发展空间的。”
“天然气热电联产同时生产了电和热两种产品,提高了能源利用效率的同时也能获得电和热两部分收益,经济性相应提高,因此也得到了市场的更多认同”
占比超70%、规模超过5000万千瓦,天然气热电联产是如何取得这样的成绩的?
中国城市燃气协会分布式能源专委会主任徐晓东表示,这是不合理的电价机制导致的结果。“气电灵活性高,适合于调峰,但没有调峰电价,企业无法获得合理收益。谁愿意去无私奉献?”徐晓东说,“天然气热电联产同时生产了电和热两种产品,提高了能源利用效率的同时也能获得电和热两部分收益,经济性相应提高,因此也得到了市场的更多认同。所以,热电联产占比高实际上是气电的无奈之举。”
江亿也表示,“电价机制没整明白”是阻碍天然气调峰电站发展的重要原因。
“虽然运行费高,但燃气电厂初始投资实际上比燃煤电厂便宜,还节省土地。同时,燃气调峰电厂运行小时数不必太高,这不同于燃煤电厂。如果运行小时数低于4000小时,燃煤电厂可能就会亏损,但天然气调峰电厂本身定位是调峰,无需追求较长的运行时间,所以运行小时数在两三千小时左右时,反而是比较合适的。因为气价高,利用小时数多了,反倒会赔钱。”江亿说,“但是,反过来讲,调峰电站发展慢还是因为调峰电价政策没有整明白,这部分电量应该是高价电。”
据介绍,我国先后于2002年和2015年两次启动电力体制改革,电价市场化形成机制一直是两轮改革的核心目标。但近20年来,电价改革并不顺利,其中调峰电价形成机制至今未有大的突破。
郭焦锋说:“事实上,气电调峰是双向的。一方面,作为电力生产方,气电可以参与电力系统的调峰;另一方面,作为天然气使用方,气电也可以参与天然气系统的调峰。但目前我国缺少电力调峰和天然气调峰的补偿政策,气电的双向调峰均难以得到合理回报。”
(
End
欢迎分享给你的朋友!
责编 | 卢奇秀
推荐阅读
大动作!“第四桶油”重磅整合天然气资产背后有何深意?
工程院院士干勇:这些问题不解决,氢能就不是热不热的问题,而是能不能活下去的问题了
今年成品油“价格战”尤其激烈
北极星输配电网讯:2022年4月26日,中央财经委员会第十一次会议提出:“发展分布式智能电网,建设一批新型绿色低碳能源基地,加快完善油气管网。”
那么分布式智能电网提出的意义与概念内涵是什么?这里我们做一些民间解读,供大家参考。
分布式智能电网的提出背景
在分析之前,我们需要注意到一个信息,那就是“分布式智能电网”提出的位置,是放在“一批绿色低碳能源基地”之前的,这背后的意义是非常重要的。
绿色低碳能源基地,我们认为主要是2021年国家提出的“9+5”建设方案,即:9大清洁能源基地,包括松辽、冀北、黄河上游、黄河几字湾、新疆等;以及5大海上风电基地,包括广东、福建、浙江、江苏、上海。
那么为什么“分布式智能电网”的提法,要放到“绿色低碳能源基地”之前?
其实是集中式清洁发电项目所面临的根本矛盾所导致:即大电网的消纳能力和消纳水平,与全系统获得成本之间的矛盾。
所谓“全系统获得成本”,即一度电从发端开始,安全、稳定、可靠、按需地输送到负荷末端,所需投入的全部成本之和。过去我们过于关注风光发电的边际成本降低,已经低于火电的边际发电成本,而且基地规模越大,边际成本越低。
但是对买单的终端用户来说,关注的是全系统获得成本,即在负荷侧最末端获得一度电,所需付出的成本。约等于“边际发电成本+边际输配电成本+边际用户内部成本”。
消纳能力是电力系统的稳态容纳能力,比如电网输电能力、系统调节水平等;消纳水平是系统的动态容纳能力,比如并网技术性能、调度运行水平等。
由于风光资源的间歇性、波动性、随机性等特点,一方面需要建设远距离输电线路(比如9大清洁能源基地);另一方面需要配置大量调频、调峰资源(储能、灵活性火电、气电、水电),使得边际的输配电成本大幅度抬高,导致在市场水平上体现出绿色电力的“全系统获得成本”较高,反过来制约了集中式清洁能源的发展。
而且应该看到的是,对于已经是复杂巨系统的“含特高压的输电网络”来说,绿色发电容量的增长,与解决制约的应对成本,将呈现指数级的非线性关系。
所以我们认为,风光大基地的外部制约因素,已经受到了决策层的高度重视,所以才以更靠前的位置,提出建设“分布式智能电网”的说法。
分布式智能电网的核心意义
而分布式能源则较好的适应了这种情况,即在“最靠近负荷的地方,就近实现消纳”。因为最靠近负荷的地方,消纳所受的制约最小(省去了边际输电价格,以及绝大多数的边际配电价格),而零售价格*,因此回报率*。
但是以分布式光伏为主的分布式清洁能源,同样存在“间歇、波动、随机”的问题,而且还存在“高渗透率的分布式光伏、影响公共配电网系统安全稳定运行”的问题。所以需要在分布式这个层级上,形成更加自洽、更加智能、更加互动的“源网荷储充”的新型配电系统,我们把这种新型配电系统理解为“分布式智能电网”。
我们可以认为,要实现“碳中和”,需要构建以新型电力系统为核心的新型能源体系;在新型电力系统的架构中,集中式清洁能源和分散式清洁能源将各自发挥重要作用。
集中式清洁能源作为能源生产端,需要耦合到集中式、远距离、大型电力网络中,形成集中式电力大系统,这是一种新型电力系统,也受到输配电网络的安全稳定边界制约,而且越集中、发电容量越大,这种制约就越强烈,抬高了全系统获得成本。
另一种新型电力系统——分散式智能电网,由于其“小、快、灵”的特点,避免了对大电网的制约,甚至会对大电网的安全稳定运行提供重要支撑,且过去的发展一直受到阻碍,但在未来的电力市场条件下,获得更多发展机会,因此更加值得关注,甚至于要比集中式清洁能源基地更为重要。
分布式智能电网的含义
我们认为,分布式智能电网的分布式,表现为三个层次的含义:
层次一,大量接入分布式电源的智能电网
这个大量接入的电网,可以是智能微电网,也可以是主动式配电网,其核心特点是分布式电源,尤其是可再生的分布式能源占比很高,某些分布式智能电网甚至可以做到任何时段***可再生分布式能源渗透(完全自治型微电网)。
层次二,在物理空间上大量分散的智能电网
在一个较大的区域(比如城域)内,大量存在上述的分布式智能电网,这些智能电网之间存在水平协作(同一电压等级)和垂直协作(不同电压等级),形成更大范围的分布式智能电网。
层次三,在逻辑空间上汇集大量分散资源的智能电网
这个分布式智能电网更接近*版虚拟电厂(VPP 3.0)的概念,就是跨越不同管理边界、不同产权边界的各类配电网或者微电网,以“信息流+电流+控制流”三流合一的方式,将微电网或者各类可调度的分布式电力资源进行汇聚,实现逻辑上的“分布式智能电网”。
分布式智能电网的物理内涵
那么分布式智能电网和微电网有什么区别?从广义的角度,我们认为基本是一样的,但是从狭义的角度,我们认为存在侧重点的一些细微差异。
从配电网的电压等级来看,大致可以分为四个层级:
城市级的公共配电网(主要电压等级在35kV以上)、园区级的公共配电网(主要电压等级在10kV)、用户侧中压配电系统(主要电压等级在10kV)、用户侧低压配电系统(主要电压等级在0.4kV及以下)。
就过去的项目总结来看,多数的微电网项目是以园区公共配电网为主,配置源网荷储形成的,也有部分用户私有的微电网系统,主要是10kV及以上的系统居多。但是分散式智能电网系统,我们认为有两点可能和过去的狭义微电网有差异:
一、控制律的变迁
从项目形式和关注重点来看,过去的微电网更多的是从电力系统的角度,强调分布式电源接入以后,微电网能够实现系统的安全稳定控制运行,并且以“离网”或者“并网”的方式运行。从概念上、系统架构和控制架构上,更像是一个大电网的缩小版。
但是我们认为分散式智能电网,其侧重点,在基安全稳定的基础上,更多的关注经济性和互动性,也就是在电力价格信号和绿色电力消纳的多目标下,如何*限度的协调好负荷资源、储能资源和分布式发电资源,实现“源网荷储”的*互动,其视角从“调度控制”,过渡到“互动协同”,背后的系统控制律从“指令式”转换到“协同式”、“自律式”、“自治式”,更多的体现分散特性。
二、实现“配-用一体化”的新型配电系统
分散式智能电网,需要更多的纳入0.4kV以下的,大量分散式低压侧负荷资源(包括低压侧并网的分布式光伏资源),而且项目体量可能更为多样化,不再是以较大规模的分布式能源项目为核心(MW级的光、储项目)。
所以分布式智能电网的另一个可能特点,就是打通“配-用”环节,将公共配电系统和用户配电系统融合起来,从电力系统的角度它们本身就是一体的,只不过由于产权问题导致了人为的割裂。电网公司受制于管理边界,用户私有电力系统末端的负荷侧资源并未得到充分的重视与开发,而分布式智能电网则需要突破这一点,形成“配-用一体化”的运营管理架构和技术架构。
分布式智能电网的逻辑内涵
如果说分布式智能电网的物理内涵,相较于微电网的区别还是比较牵强,那么其逻辑意义,我们认为与微电网相比就存在较大的差异了。
分布式的分布,不仅仅是空间上的分布,更重要的是在逻辑上的分布和聚合,产生出系统层面的更大价值。就像移动互联网并不是简单的“移动中的互联网”,而是通过聚合海量分散的C端用户,产生UGC(User-generatedcontent),并形成Web2.0的商业价值。
如果说微电网是缩小了的电网,那么它本质上还是大电网的缩微版,那么分布式智能电网就是电网的新时代,参考Web2.0的UGC(用户生产内容),我们不妨理解为用户生产能源UGE(User-generated Energy)。
这个Energy,可以是分布式电力,也可以是柔性负荷,汇聚起来就是VPP的形态。因此,分布式智能电网的逻辑内涵,是把分散在电力网络各个地方的小微资源,以信息流的方式汇聚起来,形成逻辑资源池,以虚拟电厂的高阶形态,参与到大电网的运行中,并在电力市场中获得相应回报。
总结
作为一个新的概念,分布式智能电网的概念和内涵,还有待进一步的分析、探讨和实践,期待分布式智能电网在双碳和电力市场化的驱使下,发展得更好。
一家之言,仅供参考,请多指正,谢谢!
免责声明:以上内容转载自北极星电力新闻网,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65369450,邮箱:nengyuanwang@126.com,地址:北京市朝阳区金台西路2号***社
今天的内容先分享到这里了,读完本文《分布式能源是什么意思》之后,是否是您想找的答案呢?想要了解更多分布式能源是什么意思、长春长生生物科技股份有限公司相关的财经新闻请继续关注本站,是给小编*的鼓励。